Irfan Ahmad, Saade Abdalkareem Jasim, M. K. Sharma, Renuka Jyothi S, Ahmed Hjazi, Jaafaru Sani Mohammed, Aashna Sinha, Ahmed Hussein Zwamel, Hamza Fadhel Hamzah, Bahira Abdulrazzaq Mohammed
{"title":"New paradigms to break barriers in early cancer detection for improved prognosis and treatment outcomes","authors":"Irfan Ahmad, Saade Abdalkareem Jasim, M. K. Sharma, Renuka Jyothi S, Ahmed Hjazi, Jaafaru Sani Mohammed, Aashna Sinha, Ahmed Hussein Zwamel, Hamza Fadhel Hamzah, Bahira Abdulrazzaq Mohammed","doi":"10.1002/jgm.3730","DOIUrl":null,"url":null,"abstract":"<p>The uncontrolled growth and spread of cancerous cells beyond their usual boundaries into surrounding tissues characterizes cancer. In developed countries, cancer is the leading cause of death, while in underdeveloped nations, it ranks second. Using existing cancer diagnostic tools has increased early detection rates, which is crucial for effective cancer treatment. In recent decades, there has been significant progress in cancer-specific survival rates owing to advances in cancer detection and treatment. The ability to accurately identify precursor lesions is a crucial aspect of effective cancer screening programs, as it enables early treatment initiation, leading to lower long-term incidence of invasive cancer and improved overall prognosis. However, these diagnostic methods have limitations, such as high costs and technical challenges, which can make accurate diagnosis of certain deep-seated tumors difficult. To achieve accurate cancer diagnosis and prognosis, it is essential to continue developing cutting-edge technologies in molecular biology and cancer imaging.</p>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"26 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3730","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The uncontrolled growth and spread of cancerous cells beyond their usual boundaries into surrounding tissues characterizes cancer. In developed countries, cancer is the leading cause of death, while in underdeveloped nations, it ranks second. Using existing cancer diagnostic tools has increased early detection rates, which is crucial for effective cancer treatment. In recent decades, there has been significant progress in cancer-specific survival rates owing to advances in cancer detection and treatment. The ability to accurately identify precursor lesions is a crucial aspect of effective cancer screening programs, as it enables early treatment initiation, leading to lower long-term incidence of invasive cancer and improved overall prognosis. However, these diagnostic methods have limitations, such as high costs and technical challenges, which can make accurate diagnosis of certain deep-seated tumors difficult. To achieve accurate cancer diagnosis and prognosis, it is essential to continue developing cutting-edge technologies in molecular biology and cancer imaging.
期刊介绍:
The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies.
Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials.
Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.