Irfan Ahmad, Saade Abdalkareem Jasim, M. K. Sharma, Renuka Jyothi S, Ahmed Hjazi, Jaafaru Sani Mohammed, Aashna Sinha, Ahmed Hussein Zwamel, Hamza Fadhel Hamzah, Bahira Abdulrazzaq Mohammed
{"title":"New paradigms to break barriers in early cancer detection for improved prognosis and treatment outcomes","authors":"Irfan Ahmad, Saade Abdalkareem Jasim, M. K. Sharma, Renuka Jyothi S, Ahmed Hjazi, Jaafaru Sani Mohammed, Aashna Sinha, Ahmed Hussein Zwamel, Hamza Fadhel Hamzah, Bahira Abdulrazzaq Mohammed","doi":"10.1002/jgm.3730","DOIUrl":null,"url":null,"abstract":"<p>The uncontrolled growth and spread of cancerous cells beyond their usual boundaries into surrounding tissues characterizes cancer. In developed countries, cancer is the leading cause of death, while in underdeveloped nations, it ranks second. Using existing cancer diagnostic tools has increased early detection rates, which is crucial for effective cancer treatment. In recent decades, there has been significant progress in cancer-specific survival rates owing to advances in cancer detection and treatment. The ability to accurately identify precursor lesions is a crucial aspect of effective cancer screening programs, as it enables early treatment initiation, leading to lower long-term incidence of invasive cancer and improved overall prognosis. However, these diagnostic methods have limitations, such as high costs and technical challenges, which can make accurate diagnosis of certain deep-seated tumors difficult. To achieve accurate cancer diagnosis and prognosis, it is essential to continue developing cutting-edge technologies in molecular biology and cancer imaging.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3730","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The uncontrolled growth and spread of cancerous cells beyond their usual boundaries into surrounding tissues characterizes cancer. In developed countries, cancer is the leading cause of death, while in underdeveloped nations, it ranks second. Using existing cancer diagnostic tools has increased early detection rates, which is crucial for effective cancer treatment. In recent decades, there has been significant progress in cancer-specific survival rates owing to advances in cancer detection and treatment. The ability to accurately identify precursor lesions is a crucial aspect of effective cancer screening programs, as it enables early treatment initiation, leading to lower long-term incidence of invasive cancer and improved overall prognosis. However, these diagnostic methods have limitations, such as high costs and technical challenges, which can make accurate diagnosis of certain deep-seated tumors difficult. To achieve accurate cancer diagnosis and prognosis, it is essential to continue developing cutting-edge technologies in molecular biology and cancer imaging.