Safety and efficiency of a fully automatic workflow for auto-segmentation in radiotherapy using three commercially available deep learning-based applications
Hasan Cavus , Philippe Bulens , Koen Tournel , Marc Orlandini , Alexandra Jankelevitch , Wouter Crijns , Brigitte Reniers
{"title":"Safety and efficiency of a fully automatic workflow for auto-segmentation in radiotherapy using three commercially available deep learning-based applications","authors":"Hasan Cavus , Philippe Bulens , Koen Tournel , Marc Orlandini , Alexandra Jankelevitch , Wouter Crijns , Brigitte Reniers","doi":"10.1016/j.phro.2024.100627","DOIUrl":null,"url":null,"abstract":"<div><p>Advancements in radiotherapy auto-segmentation necessitate reliable and efficient workflows. Therefore, a standardized fully automatic workflow was developed for three commercially available deep learning-based auto-segmentation applications and compared to a manual workflow for safety and efficiency. The workflow underwent safety evaluation with failure mode and effects analysis. Notably, eight failure modes were reduced, including seven with severity factors ≥7, indicating the effect on patients, and two with Risk Priority Number value >125, which assesses relative risk level. Efficiency, measured by mouse clicks, showed zero clicks with the automatic workflow. This automation illustrated improvement in both safety and efficiency of workflow.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000976/pdfft?md5=2b3abdc79a31bbca036b2178ac496af9&pid=1-s2.0-S2405631624000976-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in radiotherapy auto-segmentation necessitate reliable and efficient workflows. Therefore, a standardized fully automatic workflow was developed for three commercially available deep learning-based auto-segmentation applications and compared to a manual workflow for safety and efficiency. The workflow underwent safety evaluation with failure mode and effects analysis. Notably, eight failure modes were reduced, including seven with severity factors ≥7, indicating the effect on patients, and two with Risk Priority Number value >125, which assesses relative risk level. Efficiency, measured by mouse clicks, showed zero clicks with the automatic workflow. This automation illustrated improvement in both safety and efficiency of workflow.