Innovative construction of high-strength tungsten-copper joint through laser texture and nano-activation

IF 6.7 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL
Kai Wang, Yingtong Guo, Mengwei Lv, Kun Ni, Zumin Wang, Yuan Huang
{"title":"Innovative construction of high-strength tungsten-copper joint through laser texture and nano-activation","authors":"Kai Wang,&nbsp;Yingtong Guo,&nbsp;Mengwei Lv,&nbsp;Kun Ni,&nbsp;Zumin Wang,&nbsp;Yuan Huang","doi":"10.1016/j.jmatprotec.2024.118558","DOIUrl":null,"url":null,"abstract":"<div><p>Tungsten-copper (W-Cu) joints hold immense promise as plasma-facing materials in fusion reactors. However, the inherent immiscibility of W-Cu poses significant challenges in joint fabrication. Here, we introduce an innovative methodology that incorporates laser texture, W surface nano-activation, and subsequent diffusion bonding to fabricate W-Cu joints. Remarkably, the joints achieved exhibit unparalleled mechanical properties, with a peak tensile strength of 201 MPa and a shear strength of 141 MPa, surpassing previously reported W-Cu joints. To gain insights into the underlying mechanisms, we conducted a multiscale analysis utilizing scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and density-functional theory (DFT) calculations. Our findings reveal a unique embedded structure and a metallurgically bonded interface at the W-Cu junction. Furthermore, the diffusion zone at the interface exhibits a fascinating hybrid crystal structure, maintaining a body-centered cubic (BCC) structure in certain regions while displaying a tetragonal crystal structure (with lattice parameters a=b=2.8617, c=3.44) in others. This tetragonal crystal structure formation within the W-Cu diffusion zone remains unexplored in previous literature. In summary, this novel W-Cu bonding approach not only offers a cutting-edge solution for modern manufacturing and fusion energy applications but also lays a solid theoretical foundation for understanding the intricate microstructure-property relationships in W-Cu systems.</p></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"332 ","pages":"Article 118558"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624002760","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tungsten-copper (W-Cu) joints hold immense promise as plasma-facing materials in fusion reactors. However, the inherent immiscibility of W-Cu poses significant challenges in joint fabrication. Here, we introduce an innovative methodology that incorporates laser texture, W surface nano-activation, and subsequent diffusion bonding to fabricate W-Cu joints. Remarkably, the joints achieved exhibit unparalleled mechanical properties, with a peak tensile strength of 201 MPa and a shear strength of 141 MPa, surpassing previously reported W-Cu joints. To gain insights into the underlying mechanisms, we conducted a multiscale analysis utilizing scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and density-functional theory (DFT) calculations. Our findings reveal a unique embedded structure and a metallurgically bonded interface at the W-Cu junction. Furthermore, the diffusion zone at the interface exhibits a fascinating hybrid crystal structure, maintaining a body-centered cubic (BCC) structure in certain regions while displaying a tetragonal crystal structure (with lattice parameters a=b=2.8617, c=3.44) in others. This tetragonal crystal structure formation within the W-Cu diffusion zone remains unexplored in previous literature. In summary, this novel W-Cu bonding approach not only offers a cutting-edge solution for modern manufacturing and fusion energy applications but also lays a solid theoretical foundation for understanding the intricate microstructure-property relationships in W-Cu systems.

通过激光纹理和纳米活化技术创新构建高强度钨铜接头
钨-铜(W-Cu)接头作为聚变反应堆中面向等离子体的材料前景广阔。然而,W-铜固有的不溶性给接头制造带来了巨大挑战。在这里,我们介绍了一种创新方法,该方法结合了激光纹理、W 表面纳米活化以及随后的扩散接合来制造 W-Cu 接头。值得注意的是,制造出的接头具有无与伦比的机械性能,峰值拉伸强度达到 201 兆帕,剪切强度达到 141 兆帕,超过了之前报道的 W-Cu 接头。为了深入了解其基本机制,我们利用扫描电子显微镜 (SEM)、高分辨率透射电子显微镜 (HRTEM) 和密度泛函理论 (DFT) 计算进行了多尺度分析。我们的研究结果表明,在 W-Cu 交界处存在独特的嵌入结构和冶金结合界面。此外,界面处的扩散区呈现出迷人的混合晶体结构,在某些区域保持体心立方(BCC)结构,而在其他区域则显示出四方晶体结构(晶格参数 a=b=2.8617,c=3.44)。这种在 W-Cu 扩散区内形成的四方晶体结构在以往的文献中仍未得到探讨。总之,这种新颖的 W-Cu 键合方法不仅为现代制造和聚变能源应用提供了前沿解决方案,而且为理解 W-Cu 系统中错综复杂的微观结构-性能关系奠定了坚实的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信