Long-term temperature prediction with hybrid autoencoder algorithms

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
J. Pérez-Aracil , D. Fister , C.M. Marina , C. Peláez-Rodríguez , L. Cornejo-Bueno , P.A. Gutiérrez , M. Giuliani , A. Castelleti , S. Salcedo-Sanz
{"title":"Long-term temperature prediction with hybrid autoencoder algorithms","authors":"J. Pérez-Aracil ,&nbsp;D. Fister ,&nbsp;C.M. Marina ,&nbsp;C. Peláez-Rodríguez ,&nbsp;L. Cornejo-Bueno ,&nbsp;P.A. Gutiérrez ,&nbsp;M. Giuliani ,&nbsp;A. Castelleti ,&nbsp;S. Salcedo-Sanz","doi":"10.1016/j.acags.2024.100185","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes two hybrid approaches based on Autoencoders (AEs) for long-term temperature prediction. The first algorithm comprises an AE trained to learn temperature patterns, which is then linked to a second AE, used to detect possible anomalies and provide a final temperature prediction. The second proposed approach involves training an AE and then using the resulting latent space as input of a neural network, which will provide the final prediction output. Both approaches are tested in long-term air temperature prediction in European cities: seven European locations where major heat waves occurred have been considered. The long-term temperature prediction for the entire year of the heatwave events has been analysed. Results show that the proposed approaches can obtain accurate long-term (up to 4 weeks) temperature prediction, improving Persistence and Climatology in the benchmark models compared. In heatwave periods, where the persistence of the temperature is extremely high, our approach beat the persistence operator in three locations and works similarly in the rest of the cases, showing the potential of this AE-based method for long-term temperature prediction.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"23 ","pages":"Article 100185"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197424000326/pdfft?md5=5456efe65b92894adbcaf61c5ff34ab1&pid=1-s2.0-S2590197424000326-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes two hybrid approaches based on Autoencoders (AEs) for long-term temperature prediction. The first algorithm comprises an AE trained to learn temperature patterns, which is then linked to a second AE, used to detect possible anomalies and provide a final temperature prediction. The second proposed approach involves training an AE and then using the resulting latent space as input of a neural network, which will provide the final prediction output. Both approaches are tested in long-term air temperature prediction in European cities: seven European locations where major heat waves occurred have been considered. The long-term temperature prediction for the entire year of the heatwave events has been analysed. Results show that the proposed approaches can obtain accurate long-term (up to 4 weeks) temperature prediction, improving Persistence and Climatology in the benchmark models compared. In heatwave periods, where the persistence of the temperature is extremely high, our approach beat the persistence operator in three locations and works similarly in the rest of the cases, showing the potential of this AE-based method for long-term temperature prediction.

Abstract Image

利用混合自动编码器算法进行长期温度预测
本文提出了两种基于自动编码器(AE)的混合方法,用于长期温度预测。第一种算法包括一个经过训练的自动编码器,用于学习温度模式,然后将其与第二个自动编码器连接起来,用于检测可能的异常情况并提供最终的温度预测。第二种建议的方法包括训练一个 AE,然后将由此产生的潜在空间作为神经网络的输入,从而提供最终的预测输出。这两种方法都在欧洲城市的长期气温预测中进行了测试:考虑了七个发生过重大热浪的欧洲地点。对热浪事件全年的长期气温预测进行了分析。结果表明,所建议的方法可以获得准确的长期(长达 4 周)气温预测,并改善了基准模型的持久性和气候学。在气温持续性极高的热浪期,我们的方法在三个地点击败了持续性算子,在其他情况下效果类似,显示了这种基于 AE 的方法在长期气温预测方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信