On an inequality related to the volume of a parallelepiped

Oskar Maria Baksalary , Götz Trenkler
{"title":"On an inequality related to the volume of a parallelepiped","authors":"Oskar Maria Baksalary ,&nbsp;Götz Trenkler","doi":"10.1016/j.exco.2024.100155","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of establishing an upper bound for the volume of a parallelepiped is considered by utilizing an original approach involving a skew-symmetric matrix of order four (along with its Moore–Penrose inverse). It is shown that the commonly known inequality characterizing the bound can be virtually sharpened. Similarly, a sharpening is established with respect to the Cauchy–Schwarz inequality. General properties of the Moore–Penrose inverse of a skew-symmetric matrix are discussed as well.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100155"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000211/pdfft?md5=133540ffa4027abba6ae5558b006daa1&pid=1-s2.0-S2666657X24000211-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of establishing an upper bound for the volume of a parallelepiped is considered by utilizing an original approach involving a skew-symmetric matrix of order four (along with its Moore–Penrose inverse). It is shown that the commonly known inequality characterizing the bound can be virtually sharpened. Similarly, a sharpening is established with respect to the Cauchy–Schwarz inequality. General properties of the Moore–Penrose inverse of a skew-symmetric matrix are discussed as well.

关于平行四边形体积的不等式
通过使用一种涉及四阶偏斜对称矩阵(及其摩尔-彭罗斯逆矩阵)的独创方法,研究了为平行六面体的体积确定上限的问题。结果表明,表征该边界的常识不等式实际上可以锐化。同样,也建立了关于 Cauchy-Schwarz 不等式的锐化。此外,还讨论了偏斜对称矩阵的摩尔-彭罗斯逆的一般性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信