Novel approach for precise identification of vibration frequencies and damping ratios from free vibration decay time histories data of nonlinear single degree of freedom models
{"title":"Novel approach for precise identification of vibration frequencies and damping ratios from free vibration decay time histories data of nonlinear single degree of freedom models","authors":"Fernando M.A. Nogueira, Flávio S. Barbosa","doi":"10.1016/j.ijnonlinmec.2024.104867","DOIUrl":null,"url":null,"abstract":"<div><p>The significance of Single Degree of Freedom (SDOF) systems lies in their ability to serve as foundational elements for modeling more complex dynamic problems. By capturing essential dynamic behavior with simplicity, SDOF models enable efficient analysis and comprehension of complex systems, justifying the investigation of these simplified models. In nonlinear scenarios, SDOF models result in time series data wherein vibration frequencies vary over time. Classically, time–frequency or Hilbert transforms applied to temporal responses are frequently used to identify the evolution of frequencies and damping ratio over time. These techniques provide results that reflect the spectrum composition achieved for the analyzed time window and present difficulties in precisely determining the magnitude and the exact instant of an effective frequency or damping ratio variation. In this sense, this work introduces a new methodology capable of accurately identifying the vibration frequency as a function of time, i.e., the instantaneous frequency, along with the instantaneous damping ratio. At this initial stage, the focus is on validating the methodology by comparing its performance with the classical approach based on time–frequency transforms. The initial results obtained from synthetic free vibration decay responses of SDOF nonlinear models highlight the accuracy of our findings compared to those obtained from time–frequency transforms. The presented methodology holds promise for further advancement, with potential impacts including structural damage identification, modal identification and nonlinear dynamic analysis.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104867"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002324","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The significance of Single Degree of Freedom (SDOF) systems lies in their ability to serve as foundational elements for modeling more complex dynamic problems. By capturing essential dynamic behavior with simplicity, SDOF models enable efficient analysis and comprehension of complex systems, justifying the investigation of these simplified models. In nonlinear scenarios, SDOF models result in time series data wherein vibration frequencies vary over time. Classically, time–frequency or Hilbert transforms applied to temporal responses are frequently used to identify the evolution of frequencies and damping ratio over time. These techniques provide results that reflect the spectrum composition achieved for the analyzed time window and present difficulties in precisely determining the magnitude and the exact instant of an effective frequency or damping ratio variation. In this sense, this work introduces a new methodology capable of accurately identifying the vibration frequency as a function of time, i.e., the instantaneous frequency, along with the instantaneous damping ratio. At this initial stage, the focus is on validating the methodology by comparing its performance with the classical approach based on time–frequency transforms. The initial results obtained from synthetic free vibration decay responses of SDOF nonlinear models highlight the accuracy of our findings compared to those obtained from time–frequency transforms. The presented methodology holds promise for further advancement, with potential impacts including structural damage identification, modal identification and nonlinear dynamic analysis.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.