GraphCCI: Critical Components Identification for Enhancing Security of Cyber-Physical Power Systems

Yigu Liu;Alexandru Ştefanov;Ioannis Semertzis;Peter Palensky
{"title":"GraphCCI: Critical Components Identification for Enhancing Security of Cyber-Physical Power Systems","authors":"Yigu Liu;Alexandru Ştefanov;Ioannis Semertzis;Peter Palensky","doi":"10.1109/TICPS.2024.3436647","DOIUrl":null,"url":null,"abstract":"Cyber security risks are emerging in Cyber-Physical power Systems (CPS) due to the increasing integration of cyber and physical infrastructures. Critical component identification is a crucial task for the mitigation and prevention of catastrophic blackouts. In this paper, we propose a novel method using graph data mining for critical CPS components identification named GraphCCI. First, it defines two categories of component correlations to reveal the cascading features of CPS. GraphCCI maps cascading failure datasets under time-varying operational states into weighted cascading graphs and constructs a graph database for graph data mining. By adopting graph data mining techniques, frequent subgraphs are identified to construct the Cascading Characteristics Graph (CC-Graph). Finally, the Node Criticality Index (NC-Index) is proposed to quantify the criticality of each CPS component. The experimental results on the IEEE 39-bus system verify the effectiveness of the proposed method and present an in-depth analysis of the CPS cascading features.","PeriodicalId":100640,"journal":{"name":"IEEE Transactions on Industrial Cyber-Physical Systems","volume":"2 ","pages":"340-349"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10620647/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cyber security risks are emerging in Cyber-Physical power Systems (CPS) due to the increasing integration of cyber and physical infrastructures. Critical component identification is a crucial task for the mitigation and prevention of catastrophic blackouts. In this paper, we propose a novel method using graph data mining for critical CPS components identification named GraphCCI. First, it defines two categories of component correlations to reveal the cascading features of CPS. GraphCCI maps cascading failure datasets under time-varying operational states into weighted cascading graphs and constructs a graph database for graph data mining. By adopting graph data mining techniques, frequent subgraphs are identified to construct the Cascading Characteristics Graph (CC-Graph). Finally, the Node Criticality Index (NC-Index) is proposed to quantify the criticality of each CPS component. The experimental results on the IEEE 39-bus system verify the effectiveness of the proposed method and present an in-depth analysis of the CPS cascading features.
GraphCCI:增强网络物理电力系统安全的关键部件识别
由于网络和物理基础设施的日益融合,网络物理电力系统(CPS)中出现了网络安全风险。关键组件识别是缓解和预防灾难性停电的一项重要任务。在本文中,我们提出了一种利用图数据挖掘进行 CPS 关键组件识别的新方法,命名为 GraphCCI。首先,它定义了两类组件相关性,以揭示 CPS 的级联特征。GraphCCI 将时变运行状态下的级联故障数据集映射为加权级联图,并构建图数据库用于图数据挖掘。通过采用图数据挖掘技术,识别出频繁出现的子图,从而构建级联特征图(CC-Graph)。最后,提出了节点临界度指数(NC-Index)来量化每个 CPS 组件的临界度。在 IEEE 39 总线系统上的实验结果验证了所提方法的有效性,并对 CPS 级联特征进行了深入分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信