B.A. El-Badry , O. Aldaghri , K.H. Ibnaouf , Alaa M. Younis , Abuzar Albadri , Abdullah H. Alluhayb , Mohamed Ali Ben Aissa , A. Modwi
{"title":"Efficacy of mesoporous TiO2–ZrO2@g-C3N4 produced using a simple ultrasonic approach for copper ion removal from wastewater","authors":"B.A. El-Badry , O. Aldaghri , K.H. Ibnaouf , Alaa M. Younis , Abuzar Albadri , Abdullah H. Alluhayb , Mohamed Ali Ben Aissa , A. Modwi","doi":"10.1016/j.jsamd.2024.100772","DOIUrl":null,"url":null,"abstract":"<div><p>The present study describes ultrasonically produced ternary composite material composed of carbon nitride nanosheets, zirconium, and titanium oxides for elimination of copper ions. The formation of monoclinic ZrO<sub>2</sub>, anatase TiO<sub>2</sub>, and g-C<sub>3</sub>N<sub>4</sub> phases with respective crystallite sizes 6, 11, 13 nm were verified by the X-ray diffraction technique. The dispersion of the metal oxides nanoparticles with the graphitic nanosheets, the elemental composition of Zr, Ti, O, C and N, and the characteristic functional groups were verified respectively by TEM, EDX, and FTIR analysis that confirmed the successful formation and composition of the nanocomposite TiO<sub>2</sub>–ZrO<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub> (TZCN). The good porosity of the composite that show a surface area, pore volume, and pore diameter values of 47.42 m<sup>2</sup>/g, 0.056 cm<sup>3</sup> g<sup>−1</sup>, and 20.3 Å that nominate it for adsorption application. The adsorption capabilities of the nanocomposite were studied for copper ion removal from an aqueous solution, as well as the impacts of pH and starting Cu<sup>2+</sup> concentration. The results show that the adsorption process is pH and starting concentration-dependent, with a maximum adsorption capacity of 447.8 mg/g. The Cu<sup>2+</sup> adsorption is a monolayer chemisorption process that is well described by the Langmuir adsorption model and follows pseudo-second-order kinetics. Moreover, a plausible mechanism for Cu<sup>2+</sup> ion adsorption on the surface of TZCN nanocomposite particles is proposed.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924001035/pdfft?md5=b828bfabf9df48915c297d2b66701873&pid=1-s2.0-S2468217924001035-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924001035","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study describes ultrasonically produced ternary composite material composed of carbon nitride nanosheets, zirconium, and titanium oxides for elimination of copper ions. The formation of monoclinic ZrO2, anatase TiO2, and g-C3N4 phases with respective crystallite sizes 6, 11, 13 nm were verified by the X-ray diffraction technique. The dispersion of the metal oxides nanoparticles with the graphitic nanosheets, the elemental composition of Zr, Ti, O, C and N, and the characteristic functional groups were verified respectively by TEM, EDX, and FTIR analysis that confirmed the successful formation and composition of the nanocomposite TiO2–ZrO2@g-C3N4 (TZCN). The good porosity of the composite that show a surface area, pore volume, and pore diameter values of 47.42 m2/g, 0.056 cm3 g−1, and 20.3 Å that nominate it for adsorption application. The adsorption capabilities of the nanocomposite were studied for copper ion removal from an aqueous solution, as well as the impacts of pH and starting Cu2+ concentration. The results show that the adsorption process is pH and starting concentration-dependent, with a maximum adsorption capacity of 447.8 mg/g. The Cu2+ adsorption is a monolayer chemisorption process that is well described by the Langmuir adsorption model and follows pseudo-second-order kinetics. Moreover, a plausible mechanism for Cu2+ ion adsorption on the surface of TZCN nanocomposite particles is proposed.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.