{"title":"Weak convergence of the split-step backward Euler method for stochastic delay integro-differential equations","authors":"Yan Li, Qiuhong Xu, Wanrong Cao","doi":"10.1016/j.matcom.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, our primary objective is to discuss the weak convergence of the split-step backward Euler (SSBE) method, renowned for its exceptional stability when used to solve a class of stochastic delay integro-differential equations (SDIDEs) characterized by global Lipschitz coefficients. Traditional weak convergence analysis techniques are not directly applicable to SDIDEs due to the absence of a Kolmogorov equation. To bridge this gap, we employ modified equations to establish an equivalence between the SSBE method used for solving the original SDIDEs and the Euler–Maruyama method applied to modified equations. By demonstrating first-order strong convergence between the solutions of SDIDEs and the modified equations, we establish the first-order weak convergence of the SSBE method for SDIDEs. Finally, we present numerical simulations to validate our theoretical findings.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003070","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, our primary objective is to discuss the weak convergence of the split-step backward Euler (SSBE) method, renowned for its exceptional stability when used to solve a class of stochastic delay integro-differential equations (SDIDEs) characterized by global Lipschitz coefficients. Traditional weak convergence analysis techniques are not directly applicable to SDIDEs due to the absence of a Kolmogorov equation. To bridge this gap, we employ modified equations to establish an equivalence between the SSBE method used for solving the original SDIDEs and the Euler–Maruyama method applied to modified equations. By demonstrating first-order strong convergence between the solutions of SDIDEs and the modified equations, we establish the first-order weak convergence of the SSBE method for SDIDEs. Finally, we present numerical simulations to validate our theoretical findings.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.