Fast Whole-Brain MR Multi-Parametric Mapping with Scan-Specific Self-Supervised Networks.

ArXiv Pub Date : 2024-08-06
Amir Heydari, Abbas Ahmadi, Tae Hyung Kim, Berkin Bilgic
{"title":"Fast Whole-Brain MR Multi-Parametric Mapping with Scan-Specific Self-Supervised Networks.","authors":"Amir Heydari, Abbas Ahmadi, Tae Hyung Kim, Berkin Bilgic","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Quantification of tissue parameters using MRI is emerging as a powerful tool in clinical diagnosis and research studies. The need for multiple long scans with different acquisition parameters prohibits quantitative MRI from reaching widespread adoption in routine clinical and research exams. Accelerated parameter mapping techniques leverage parallel imaging, signal modelling and deep learning to offer more practical quantitative MRI acquisitions. However, the achievable acceleration and the quality of maps are often limited. Joint MAPLE is a recent state-of-the-art multi-parametric and scan-specific parameter mapping technique with promising performance at high acceleration rates. It synergistically combines parallel imaging, model-based and machine learning approaches for joint mapping of <math> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> <mo>,</mo> <mspace></mspace> <msup> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> <mrow><mi>*</mi></mrow> </msup> </math> , proton density and the field inhomogeneity. However, Joint MAPLE suffers from prohibitively long reconstruction time to estimate the maps from a multi-echo, multi-flip angle (MEMFA) dataset at high resolution in a scan-specific manner. In this work, we propose a faster version of Joint MAPLE which retains the mapping performance of the original version. Coil compression, random slice selection, parameter-specific learning rates and transfer learning are synergistically combined in the proposed framework. It speeds-up the reconstruction time up to 700 times than the original version and processes a whole-brain MEMFA dataset in 21 minutes on average, which originally requires ~260 hours for Joint MAPLE. The mapping performance of the proposed framework is ~2-fold better than the standard and the state-of-the-art evaluated reconstruction techniques on average in terms of the root mean squared error.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11326419/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantification of tissue parameters using MRI is emerging as a powerful tool in clinical diagnosis and research studies. The need for multiple long scans with different acquisition parameters prohibits quantitative MRI from reaching widespread adoption in routine clinical and research exams. Accelerated parameter mapping techniques leverage parallel imaging, signal modelling and deep learning to offer more practical quantitative MRI acquisitions. However, the achievable acceleration and the quality of maps are often limited. Joint MAPLE is a recent state-of-the-art multi-parametric and scan-specific parameter mapping technique with promising performance at high acceleration rates. It synergistically combines parallel imaging, model-based and machine learning approaches for joint mapping of T 1 , T 2 * , proton density and the field inhomogeneity. However, Joint MAPLE suffers from prohibitively long reconstruction time to estimate the maps from a multi-echo, multi-flip angle (MEMFA) dataset at high resolution in a scan-specific manner. In this work, we propose a faster version of Joint MAPLE which retains the mapping performance of the original version. Coil compression, random slice selection, parameter-specific learning rates and transfer learning are synergistically combined in the proposed framework. It speeds-up the reconstruction time up to 700 times than the original version and processes a whole-brain MEMFA dataset in 21 minutes on average, which originally requires ~260 hours for Joint MAPLE. The mapping performance of the proposed framework is ~2-fold better than the standard and the state-of-the-art evaluated reconstruction techniques on average in terms of the root mean squared error.

利用特定扫描自监督网络快速绘制全脑磁共振多参数图谱
在临床诊断和研究中,利用磁共振成像对组织参数进行定量分析正在成为一种强有力的工具。由于需要使用不同的采集参数进行多次长时间扫描,定量 MRI 无法在常规临床和研究检查中得到广泛应用。加速参数映射技术利用并行成像、信号建模和深度学习来提供更实用的定量 MRI 采集。然而,可实现的加速度和制图质量往往有限。联合 MAPLE 是一种最新的多参数和特定扫描参数映射技术,在高加速度下性能良好。它协同结合了并行成像、基于模型和机器学习的方法,可联合绘制 T1、T2*、质子密度和磁场不均匀度图。然而,Joint MAPLE 在以特定扫描方式从高分辨率的多回波、多翻转角度(MEMFA)数据集中估计图谱时,存在重建时间过长的问题。在这项工作中,我们提出了一种更快的联合 MAPLE 版本,它保留了原始版本的映射性能。在提出的框架中,线圈压缩、随机切片选择、特定参数学习率和迁移学习被协同结合在一起。它将重建时间加快到原始版本的 700 倍,处理全脑 MEMFA 数据集平均只需 21 分钟,而联合 MAPLE 原本需要 ~260 小时。就均方根误差而言,拟议框架的映射性能比标准重建技术和最先进的评估重建技术平均高出 2 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信