Design, Construction, and Test of Compact, Distributed-Charge, X-Band Accelerator Systems that Enable Image-Guided, VHEE FLASH Radiotherapy.

ArXiv Pub Date : 2024-08-07
Christopher P J Barty, J Martin Algots, Alexander J Amador, James C R Barty, Shawn M Betts, Marcelo A Casteñada, Matthew M Chu, Michael E Daley, Ricardo A De Luna Lopez, Derek A Diviak, Haytham H Effarah, Roberto Feliciano, Adan Garcia, Keith J Grabiel, Alex S Griffin, Frederic V Hartemann, Leslie Heid, Yoonwoo Hwang, Gennady Imeshev, Michael Jentschel, Christopher A Johnson, Kenneth W Kinosian, Agnese Lagzda, Russell J Lochrie, Michael W May, Everardo Molina, Christopher L Nagel, Henry J Nagel, Kyle R Peirce, Zachary R Peirce, Mauricio E Quiñonez, Ferenc Raksi, Kelanu Ranganath, Trevor Reutershan, Jimmie Salazar, Mitchell E Schneider, Michael W L Seggebruch, Joy Y Yang, Nathan H Yeung, Collette B Zapata, Luis E Zapata, Eric J Zepeda, Jingyuan Zhang
{"title":"Design, Construction, and Test of Compact, Distributed-Charge, X-Band Accelerator Systems that Enable Image-Guided, VHEE FLASH Radiotherapy.","authors":"Christopher P J Barty, J Martin Algots, Alexander J Amador, James C R Barty, Shawn M Betts, Marcelo A Casteñada, Matthew M Chu, Michael E Daley, Ricardo A De Luna Lopez, Derek A Diviak, Haytham H Effarah, Roberto Feliciano, Adan Garcia, Keith J Grabiel, Alex S Griffin, Frederic V Hartemann, Leslie Heid, Yoonwoo Hwang, Gennady Imeshev, Michael Jentschel, Christopher A Johnson, Kenneth W Kinosian, Agnese Lagzda, Russell J Lochrie, Michael W May, Everardo Molina, Christopher L Nagel, Henry J Nagel, Kyle R Peirce, Zachary R Peirce, Mauricio E Quiñonez, Ferenc Raksi, Kelanu Ranganath, Trevor Reutershan, Jimmie Salazar, Mitchell E Schneider, Michael W L Seggebruch, Joy Y Yang, Nathan H Yeung, Collette B Zapata, Luis E Zapata, Eric J Zepeda, Jingyuan Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates. The physics of laser-Compton x-ray scattering ensures that the scattered x-rays follow exactly the trajectory of the incident electrons, thus providing a route to image-guided, VHEE FLASH radiotherapy. The keys to a compact architecture capable of producing both laser-Compton x-rays and VHEEs are the use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients. The operation of these structures in a distributed charge mode in which each radiofrequency (RF) cycle of the drive RF pulse is filled with a low-charge, high-brightness electron bunch is enabled by the illumination of a high-brightness photogun with a train of UV laser pulses synchronized to the frequency of the underlying accelerator system. The UV pulse trains are created by a patented pulse synthesis approach which utilizes the RF clock of the accelerator to phase and amplitude modulate a narrow band continuous wave (CW) seed laser. In this way it is possible to produce up to 10 μA of average beam current from the accelerator. Such high current from a compact accelerator enables production of sufficient x-rays via laser-Compton scattering for clinical imaging and does so from a machine of \"clinical\" footprint. At the same time, the production of 1000 or greater individual micro-bunches per RF pulse enables > 10 nC of charge to be produced in a macrobunch of < 100 ns. The design, construction, and test of the 100-MeV class prototype system in Irvine, CA is also presented.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11326425/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates. The physics of laser-Compton x-ray scattering ensures that the scattered x-rays follow exactly the trajectory of the incident electrons, thus providing a route to image-guided, VHEE FLASH radiotherapy. The keys to a compact architecture capable of producing both laser-Compton x-rays and VHEEs are the use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients. The operation of these structures in a distributed charge mode in which each radiofrequency (RF) cycle of the drive RF pulse is filled with a low-charge, high-brightness electron bunch is enabled by the illumination of a high-brightness photogun with a train of UV laser pulses synchronized to the frequency of the underlying accelerator system. The UV pulse trains are created by a patented pulse synthesis approach which utilizes the RF clock of the accelerator to phase and amplitude modulate a narrow band continuous wave (CW) seed laser. In this way it is possible to produce up to 10 μA of average beam current from the accelerator. Such high current from a compact accelerator enables production of sufficient x-rays via laser-Compton scattering for clinical imaging and does so from a machine of "clinical" footprint. At the same time, the production of 1000 or greater individual micro-bunches per RF pulse enables > 10 nC of charge to be produced in a macrobunch of < 100 ns. The design, construction, and test of the 100-MeV class prototype system in Irvine, CA is also presented.

设计、建造和测试紧凑型分布式装药 X 波段加速器系统,以实现图像引导 VHEE FLASH 放射治疗。
基于紧凑型分布式电荷加速器结构的激光-康普顿 X 射线系统的设计和优化可以实现疾病的微米级成像,并同时产生能够产生 FLASH 相关剂量率的超高能电子(VHEE)束。激光-康普顿 X 射线散射的物理学原理确保了散射的 X 射线完全遵循入射电子的轨迹,从而为图像引导的 VHEE FLASH 放射治疗提供了一条途径。能够产生激光-康普顿 X 射线和 VHEE 的紧凑型结构的关键在于使用 X 波段射频加速器结构,该结构已被证明可在超过 100 MeV/m 的加速梯度下运行。这些结构以分布式电荷模式运行,在这种模式下,驱动射频脉冲的每个射频周期都充满了低电荷、高亮度的电子束,通过与底层加速器系统频率同步的紫外激光脉冲串照射高亮度光枪来实现。紫外激光脉冲串是通过一种获得专利的脉冲合成方法产生的,该方法利用加速器的射频时钟对窄带连续波(CW)种子激光器进行相位和振幅调制。通过这种方法,加速器可以产生高达 10 {\mu}A 的平均光束电流。通过激光-康普顿散射,紧凑型加速器可以产生如此大的束流,从而为临床成像提供足够的 X 射线,而且是在一台 "临床 "设备上实现的。同时,每个射频脉冲可产生 1000 个或更多的单个微束,从而在 < 100 ns 的宏束中产生 > 10 nC 的电荷。此外,还介绍了位于加利福尼亚州欧文市的 100-MeV 级原型系统的设计、建造和测试情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信