Real-time temperature anomaly detection in vaccine refrigeration systems using deep learning on a resource-constrained microcontroller.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-08-01 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1429602
Mokhtar Harrabi, Abdelaziz Hamdi, Bouraoui Ouni, Jamel Bel Hadj Tahar
{"title":"Real-time temperature anomaly detection in vaccine refrigeration systems using deep learning on a resource-constrained microcontroller.","authors":"Mokhtar Harrabi, Abdelaziz Hamdi, Bouraoui Ouni, Jamel Bel Hadj Tahar","doi":"10.3389/frai.2024.1429602","DOIUrl":null,"url":null,"abstract":"<p><p>Maintaining consistent and accurate temperature is critical for the safe and effective storage of vaccines. Traditional monitoring methods often lack real-time capabilities and may not be sensitive enough to detect subtle anomalies. This paper presents a novel deep learning-based system for real-time temperature fault detection in refrigeration systems used for vaccine storage. Our system utilizes a semi-supervised Convolutional Autoencoder (CAE) model deployed on a resource-constrained ESP32 microcontroller. The CAE is trained on real-world temperature sensor data to capture temporal patterns and reconstruct normal temperature profiles. Deviations from the reconstructed profiles are flagged as potential anomalies, enabling real-time fault detection. Evaluation using real-time data demonstrates an impressive 92% accuracy in identifying temperature faults. The system's low energy consumption (0.05 watts) and memory usage (1.2 MB) make it suitable for deployment in resource-constrained environments. This work paves the way for improved monitoring and fault detection in refrigeration systems, ultimately contributing to the reliable storage of life-saving vaccines.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1429602"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1429602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining consistent and accurate temperature is critical for the safe and effective storage of vaccines. Traditional monitoring methods often lack real-time capabilities and may not be sensitive enough to detect subtle anomalies. This paper presents a novel deep learning-based system for real-time temperature fault detection in refrigeration systems used for vaccine storage. Our system utilizes a semi-supervised Convolutional Autoencoder (CAE) model deployed on a resource-constrained ESP32 microcontroller. The CAE is trained on real-world temperature sensor data to capture temporal patterns and reconstruct normal temperature profiles. Deviations from the reconstructed profiles are flagged as potential anomalies, enabling real-time fault detection. Evaluation using real-time data demonstrates an impressive 92% accuracy in identifying temperature faults. The system's low energy consumption (0.05 watts) and memory usage (1.2 MB) make it suitable for deployment in resource-constrained environments. This work paves the way for improved monitoring and fault detection in refrigeration systems, ultimately contributing to the reliable storage of life-saving vaccines.

在资源受限的微控制器上利用深度学习实时检测疫苗制冷系统的温度异常。
保持稳定准确的温度对于安全有效地储存疫苗至关重要。传统的监测方法往往缺乏实时性,而且灵敏度可能不足以检测到细微的异常情况。本文介绍了一种基于深度学习的新型系统,用于实时检测用于疫苗储存的制冷系统中的温度故障。我们的系统利用部署在资源受限的 ESP32 微控制器上的半监督卷积自动编码器(CAE)模型。CAE 根据真实世界的温度传感器数据进行训练,以捕捉时间模式并重建正常的温度曲线。与重建曲线的偏差会被标记为潜在异常,从而实现实时故障检测。使用实时数据进行的评估表明,该系统在识别温度故障方面的准确率高达 92%,令人印象深刻。该系统能耗低(0.05 瓦),内存占用少(1.2 MB),适合在资源有限的环境中部署。这项工作为改进制冷系统的监控和故障检测铺平了道路,最终将有助于救命疫苗的可靠储存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信