Deep learning for prediction of post-thrombectomy outcomes based on admission CT angiography in large vessel occlusion stroke.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-08-01 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1369702
Jakob Sommer, Fiona Dierksen, Tal Zeevi, Anh Tuan Tran, Emily W Avery, Adrian Mak, Ajay Malhotra, Charles C Matouk, Guido J Falcone, Victor Torres-Lopez, Sanjey Aneja, James Duncan, Lauren H Sansing, Kevin N Sheth, Seyedmehdi Payabvash
{"title":"Deep learning for prediction of post-thrombectomy outcomes based on admission CT angiography in large vessel occlusion stroke.","authors":"Jakob Sommer, Fiona Dierksen, Tal Zeevi, Anh Tuan Tran, Emily W Avery, Adrian Mak, Ajay Malhotra, Charles C Matouk, Guido J Falcone, Victor Torres-Lopez, Sanjey Aneja, James Duncan, Lauren H Sansing, Kevin N Sheth, Seyedmehdi Payabvash","doi":"10.3389/frai.2024.1369702","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Computed Tomography Angiography (CTA) is the first line of imaging in the diagnosis of Large Vessel Occlusion (LVO) strokes. We trained and independently validated end-to-end automated deep learning pipelines to predict 3-month outcomes after anterior circulation LVO thrombectomy based on admission CTAs.</p><p><strong>Methods: </strong>We split a dataset of 591 patients into training/cross-validation (n = 496) and independent test set (n = 95). We trained separate models for outcome prediction based on admission \"CTA\" images alone, \"CTA + Treatment\" (including time to thrombectomy and reperfusion success information), and \"CTA + Treatment  + Clinical\" (including admission age, sex, and NIH stroke scale). A binary (favorable) outcome was defined based on a 3-month modified Rankin Scale ≤ 2. The model was trained on our dataset based on the pre-trained ResNet-50 3D Convolutional Neural Network (\"MedicalNet\") and included CTA preprocessing steps.</p><p><strong>Results: </strong>We generated an ensemble model from the 5-fold cross-validation, and tested it in the independent test cohort, with receiver operating characteristic area under the curve (AUC, 95% confidence interval) of 70 (0.59-0.81) for \"CTA,\" 0.79 (0.70-0.89) for \"CTA + Treatment,\" and 0.86 (0.79-0.94) for \"CTA + Treatment + Clinical\" input models. A \"Treatment + Clinical\" logistic regression model achieved an AUC of 0.86 (0.79-0.93).</p><p><strong>Conclusion: </strong>Our results show the feasibility of an end-to-end automated model to predict outcomes from admission and post-thrombectomy reperfusion success. Such a model can facilitate prognostication in telehealth transfer and when a thorough neurological exam is not feasible due to language barrier or pre-existing morbidities.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1369702"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324606/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1369702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Computed Tomography Angiography (CTA) is the first line of imaging in the diagnosis of Large Vessel Occlusion (LVO) strokes. We trained and independently validated end-to-end automated deep learning pipelines to predict 3-month outcomes after anterior circulation LVO thrombectomy based on admission CTAs.

Methods: We split a dataset of 591 patients into training/cross-validation (n = 496) and independent test set (n = 95). We trained separate models for outcome prediction based on admission "CTA" images alone, "CTA + Treatment" (including time to thrombectomy and reperfusion success information), and "CTA + Treatment  + Clinical" (including admission age, sex, and NIH stroke scale). A binary (favorable) outcome was defined based on a 3-month modified Rankin Scale ≤ 2. The model was trained on our dataset based on the pre-trained ResNet-50 3D Convolutional Neural Network ("MedicalNet") and included CTA preprocessing steps.

Results: We generated an ensemble model from the 5-fold cross-validation, and tested it in the independent test cohort, with receiver operating characteristic area under the curve (AUC, 95% confidence interval) of 70 (0.59-0.81) for "CTA," 0.79 (0.70-0.89) for "CTA + Treatment," and 0.86 (0.79-0.94) for "CTA + Treatment + Clinical" input models. A "Treatment + Clinical" logistic regression model achieved an AUC of 0.86 (0.79-0.93).

Conclusion: Our results show the feasibility of an end-to-end automated model to predict outcomes from admission and post-thrombectomy reperfusion success. Such a model can facilitate prognostication in telehealth transfer and when a thorough neurological exam is not feasible due to language barrier or pre-existing morbidities.

基于入院 CT 血管造影预测大血管闭塞性卒中血栓切除术后预后的深度学习。
目的:计算机断层扫描血管造影术(CTA)是诊断大血管闭塞(LVO)脑卒中的一线成像技术。我们训练并独立验证了端到端的自动深度学习管道,以根据入院 CTA 预测前循环 LVO 血栓切除术后 3 个月的预后:我们将 591 例患者的数据集分为训练/交叉验证集(n = 496)和独立测试集(n = 95)。我们分别根据入院时的 "CTA "图像、"CTA + 治疗"(包括血栓切除时间和再灌注成功信息)和 "CTA + 治疗 + 临床"(包括入院时的年龄、性别和 NIH 中风量表)对结果预测模型进行了训练。二元(良好)结果的定义是 3 个月的修正 Rankin 量表≤ 2。该模型是根据预先训练好的 ResNet-50 3D 卷积神经网络("MedicalNet")在我们的数据集上进行训练的,其中包括 CTA 预处理步骤:我们从 5 倍交叉验证中生成了一个集合模型,并在独立测试队列中对其进行了测试,结果显示 "CTA"、"CTA + 治疗 "和 "CTA + 治疗 + 临床 "输入模型的接收器操作特征曲线下面积(AUC,95% 置信区间)分别为 70(0.59-0.81)、0.79(0.70-0.89)和 0.86(0.79-0.94)。治疗+临床 "逻辑回归模型的AUC为0.86(0.79-0.93):我们的研究结果表明,端到端自动模型可以预测入院后的预后和血栓切除术后再灌注的成功率。这种模型有助于在远程医疗转运过程中以及在因语言障碍或原有疾病而无法进行全面神经系统检查的情况下预测预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信