Chen Chai, Shu-Zhen Peng, Rui Zhang, Cheng-Wei Li, Yan Zhao
{"title":"Advancing Emergency Department Triage Prediction With Machine Learning to Optimize Triage for Abdominal Pain Surgery Patients.","authors":"Chen Chai, Shu-Zhen Peng, Rui Zhang, Cheng-Wei Li, Yan Zhao","doi":"10.1177/15533506241273449","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The development of emergency department (ED) triage systems remains challenging in accurately differentiating patients with acute abdominal pain (AAP) who are critical and urgent for surgery due to subjectivity and limitations. We use machine learning models to predict emergency surgical abdominal pain patients in triage, and then compare their performance with conventional Logistic regression models.</p><p><strong>Methods: </strong>Using 38 214 patients presenting with acute abdominal pain at Zhongnan Hospital of Wuhan University between March 1, 2014, and March 1, 2022, we identified all adult patients (aged ≥18 years). We utilized routinely available triage data in electronic medical records as predictors, including structured data (eg, triage vital signs, gender, and age) and unstructured data (chief complaints and physical examinations in free-text format). The primary outcome measure was whether emergency surgery was performed. The dataset was randomly sampled, with 80% assigned to the training set and 20% to the test set. We developed 5 machine learning models: Light Gradient Boosting Machine (Light GBM), eXtreme Gradient Boosting (XGBoost), Deep Neural Network (DNN), and Random Forest (RF). Logistic regression (LR) served as the reference model. Model performance was calculated for each model, including the area under the receiver-work characteristic curve (AUC) and net benefit (decision curve), as well as the confusion matrix.</p><p><strong>Results: </strong>Of all the 38 214 acute abdominal pain patients, 4208 underwent emergency abdominal surgery while 34 006 received non-surgical treatment. In the surgery outcome prediction, all 4 machine learning models outperformed the reference model (eg, AUC, 0.899 [95%CI 0.891-0.903] in the Light GBM vs. 0.885 [95%CI 0.876-0.891] in the reference model), Similarly, most machine learning models exhibited significant improvements in net reclassification compared to the reference model (eg, NRIs of 0.0812[95%CI, 0.055-0.1105] in the XGBoost), with the exception of the RF model. Decision curve analysis shows that across the entire range of thresholds, the net benefits of the XGBoost and the Light GBM models were higher than the reference model. In particular, the Light GBM model performed well in predicting the need for emergency abdominal surgery with higher sensitivity, specificity, and accuracy.</p><p><strong>Conclusions: </strong>Machine learning models have demonstrated superior performance in predicting emergency abdominal pain surgery compared to traditional models. Modern machine learning improves clinical triage decisions and ensures that critically needy patients receive priority for emergency resources and timely, effective treatment.</p>","PeriodicalId":22095,"journal":{"name":"Surgical Innovation","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surgical Innovation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15533506241273449","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The development of emergency department (ED) triage systems remains challenging in accurately differentiating patients with acute abdominal pain (AAP) who are critical and urgent for surgery due to subjectivity and limitations. We use machine learning models to predict emergency surgical abdominal pain patients in triage, and then compare their performance with conventional Logistic regression models.
Methods: Using 38 214 patients presenting with acute abdominal pain at Zhongnan Hospital of Wuhan University between March 1, 2014, and March 1, 2022, we identified all adult patients (aged ≥18 years). We utilized routinely available triage data in electronic medical records as predictors, including structured data (eg, triage vital signs, gender, and age) and unstructured data (chief complaints and physical examinations in free-text format). The primary outcome measure was whether emergency surgery was performed. The dataset was randomly sampled, with 80% assigned to the training set and 20% to the test set. We developed 5 machine learning models: Light Gradient Boosting Machine (Light GBM), eXtreme Gradient Boosting (XGBoost), Deep Neural Network (DNN), and Random Forest (RF). Logistic regression (LR) served as the reference model. Model performance was calculated for each model, including the area under the receiver-work characteristic curve (AUC) and net benefit (decision curve), as well as the confusion matrix.
Results: Of all the 38 214 acute abdominal pain patients, 4208 underwent emergency abdominal surgery while 34 006 received non-surgical treatment. In the surgery outcome prediction, all 4 machine learning models outperformed the reference model (eg, AUC, 0.899 [95%CI 0.891-0.903] in the Light GBM vs. 0.885 [95%CI 0.876-0.891] in the reference model), Similarly, most machine learning models exhibited significant improvements in net reclassification compared to the reference model (eg, NRIs of 0.0812[95%CI, 0.055-0.1105] in the XGBoost), with the exception of the RF model. Decision curve analysis shows that across the entire range of thresholds, the net benefits of the XGBoost and the Light GBM models were higher than the reference model. In particular, the Light GBM model performed well in predicting the need for emergency abdominal surgery with higher sensitivity, specificity, and accuracy.
Conclusions: Machine learning models have demonstrated superior performance in predicting emergency abdominal pain surgery compared to traditional models. Modern machine learning improves clinical triage decisions and ensures that critically needy patients receive priority for emergency resources and timely, effective treatment.
期刊介绍:
Surgical Innovation (SRI) is a peer-reviewed bi-monthly journal focusing on minimally invasive surgical techniques, new instruments such as laparoscopes and endoscopes, and new technologies. SRI prepares surgeons to think and work in "the operating room of the future" through learning new techniques, understanding and adapting to new technologies, maintaining surgical competencies, and applying surgical outcomes data to their practices. This journal is a member of the Committee on Publication Ethics (COPE).