Secretome Analysis Using Affinity Proteomics and Immunoassays: A Focus on Tumor Biology.

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Molecular & Cellular Proteomics Pub Date : 2024-09-01 Epub Date: 2024-08-13 DOI:10.1016/j.mcpro.2024.100830
Vanessa M Beutgen, Veronika Shinkevich, Johanna Pörschke, Celina Meena, Anna M Steitz, Elke Pogge von Strandmann, Johannes Graumann, María Gómez-Serrano
{"title":"Secretome Analysis Using Affinity Proteomics and Immunoassays: A Focus on Tumor Biology.","authors":"Vanessa M Beutgen, Veronika Shinkevich, Johanna Pörschke, Celina Meena, Anna M Steitz, Elke Pogge von Strandmann, Johannes Graumann, María Gómez-Serrano","doi":"10.1016/j.mcpro.2024.100830","DOIUrl":null,"url":null,"abstract":"<p><p>The study of the cellular secretome using proteomic techniques continues to capture the attention of the research community across a broad range of topics in biomedical research. Due to their untargeted nature, independence from the model system used, historically superior depth of analysis, as well as comparative affordability, mass spectrometry-based approaches traditionally dominate such analyses. More recently, however, affinity-based proteomic assays have massively gained in analytical depth, which together with their high sensitivity, dynamic range coverage as well as high throughput capabilities render them exquisitely suited to secretome analysis. In this review, we revisit the analytical challenges implied by secretomics and provide an overview of affinity-based proteomic platforms currently available for such analyses, using the study of the tumor secretome as an example for basic and translational research.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100830"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417252/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100830","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The study of the cellular secretome using proteomic techniques continues to capture the attention of the research community across a broad range of topics in biomedical research. Due to their untargeted nature, independence from the model system used, historically superior depth of analysis, as well as comparative affordability, mass spectrometry-based approaches traditionally dominate such analyses. More recently, however, affinity-based proteomic assays have massively gained in analytical depth, which together with their high sensitivity, dynamic range coverage as well as high throughput capabilities render them exquisitely suited to secretome analysis. In this review, we revisit the analytical challenges implied by secretomics and provide an overview of affinity-based proteomic platforms currently available for such analyses, using the study of the tumor secretome as an example for basic and translational research.

利用亲和蛋白质组学和免疫测定进行分泌组分析:聚焦肿瘤生物学。
利用蛋白质组学技术对细胞分泌物组进行研究继续吸引着生物医学研究界对广泛课题的关注。由于其非靶向性、独立于所采用的模型系统、历史上卓越的分析深度以及相对低廉的价格,基于质谱的方法在此类分析中一直占据主导地位。然而最近,基于亲和力的蛋白质组分析法在分析深度上有了大幅提高,再加上其高灵敏度、动态范围覆盖以及高通量能力,使其非常适合于分泌组分析。在这篇综述中,我们将以肿瘤分泌组研究为例,重新审视分泌组学所带来的分析挑战,并概述目前可用于此类分析的亲和蛋白质组平台,为基础研究和转化研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信