Adillah Gul, Lecia L Pewe, Patrick Willems, Rupert Mayer, Fabien Thery, Caroline Asselman, Ilke Aernout, Rein Verbeke, Denzel Eggermont, Laura Van Moortel, Ellen Upton, Yifeng Zhang, Katie Boucher, Laia Miret-Casals, Hans Demol, Stefaan C De Smedt, Ine Lentacker, Lilliana Radoshevich, John T Harty, Francis Impens
{"title":"Immunopeptidomics Mapping of Listeria monocytogenes T Cell Epitopes in Mice.","authors":"Adillah Gul, Lecia L Pewe, Patrick Willems, Rupert Mayer, Fabien Thery, Caroline Asselman, Ilke Aernout, Rein Verbeke, Denzel Eggermont, Laura Van Moortel, Ellen Upton, Yifeng Zhang, Katie Boucher, Laia Miret-Casals, Hans Demol, Stefaan C De Smedt, Ine Lentacker, Lilliana Radoshevich, John T Harty, Francis Impens","doi":"10.1016/j.mcpro.2024.100829","DOIUrl":null,"url":null,"abstract":"<p><p>Listeria monocytogenes is a foodborne intracellular bacterial model pathogen. Protective immunity against Listeria depends on an effective CD8<sup>+</sup> T cell response, but very few T cell epitopes are known in mice as a common animal infection model for listeriosis. To identify epitopes, we screened for Listeria immunopeptides presented in the spleen of infected mice by mass spectrometry-based immunopeptidomics. We mapped more than 6000 mouse self-peptides presented on MHC class I molecules, including 12 high confident Listeria peptides from 12 different bacterial proteins. Bacterial immunopeptides with confirmed fragmentation spectra were further tested for their potential to activate CD8<sup>+</sup> T cells, revealing VTYNYINI from the putative cell wall surface anchor family protein LMON_0576 as a novel bona fide peptide epitope. The epitope showed high biological potency in a prime boost model and can be used as a research tool to probe CD8<sup>+</sup> T cell responses in the mouse models of Listeria infection. Together, our results demonstrate the power of immunopeptidomics for bacterial antigen identification.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100829"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414675/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100829","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Listeria monocytogenes is a foodborne intracellular bacterial model pathogen. Protective immunity against Listeria depends on an effective CD8+ T cell response, but very few T cell epitopes are known in mice as a common animal infection model for listeriosis. To identify epitopes, we screened for Listeria immunopeptides presented in the spleen of infected mice by mass spectrometry-based immunopeptidomics. We mapped more than 6000 mouse self-peptides presented on MHC class I molecules, including 12 high confident Listeria peptides from 12 different bacterial proteins. Bacterial immunopeptides with confirmed fragmentation spectra were further tested for their potential to activate CD8+ T cells, revealing VTYNYINI from the putative cell wall surface anchor family protein LMON_0576 as a novel bona fide peptide epitope. The epitope showed high biological potency in a prime boost model and can be used as a research tool to probe CD8+ T cell responses in the mouse models of Listeria infection. Together, our results demonstrate the power of immunopeptidomics for bacterial antigen identification.
单核细胞增生李斯特菌是一种食源性细胞内细菌模式病原体。对李斯特菌的保护性免疫依赖于有效的 CD8+ T 细胞应答,但小鼠是李斯特菌病的常见动物感染模型,已知的 T 细胞表位非常少。为了确定表位,我们通过基于质谱的免疫肽组学筛选了感染小鼠脾脏中出现的李斯特菌免疫肽。我们绘制了 6000 多条呈现在 MHC I 类分子上的小鼠自身肽,其中包括来自 12 种不同细菌蛋白的 12 条高保真李斯特菌肽。我们还进一步测试了碎片谱得到确认的细菌免疫肽激活 CD8+ T 细胞的潜力,结果发现推测的细胞壁表面锚家族蛋白 LMON_0576 中的 VTYNYINI 是一个新的真正的肽表位。该表位在原代促进模型中显示出很高的生物效力,可作为一种研究工具,用于探究李斯特菌感染小鼠模型中 CD8+ T 细胞的反应。我们的研究结果证明了免疫肽组学在细菌抗原鉴定方面的强大功能。
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes