A tutorial on open-source large language models for behavioral science.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-12-01 Epub Date: 2024-08-15 DOI:10.3758/s13428-024-02455-8
Zak Hussain, Marcel Binz, Rui Mata, Dirk U Wulff
{"title":"A tutorial on open-source large language models for behavioral science.","authors":"Zak Hussain, Marcel Binz, Rui Mata, Dirk U Wulff","doi":"10.3758/s13428-024-02455-8","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) have the potential to revolutionize behavioral science by accelerating and improving the research cycle, from conceptualization to data analysis. Unlike closed-source solutions, open-source frameworks for LLMs can enable transparency, reproducibility, and adherence to data protection standards, which gives them a crucial advantage for use in behavioral science. To help researchers harness the promise of LLMs, this tutorial offers a primer on the open-source Hugging Face ecosystem and demonstrates several applications that advance conceptual and empirical work in behavioral science, including feature extraction, fine-tuning of models for prediction, and generation of behavioral responses. Executable code is made available at github.com/Zak-Hussain/LLM4BeSci.git . Finally, the tutorial discusses challenges faced by research with (open-source) LLMs related to interpretability and safety and offers a perspective on future research at the intersection of language modeling and behavioral science.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525391/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02455-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have the potential to revolutionize behavioral science by accelerating and improving the research cycle, from conceptualization to data analysis. Unlike closed-source solutions, open-source frameworks for LLMs can enable transparency, reproducibility, and adherence to data protection standards, which gives them a crucial advantage for use in behavioral science. To help researchers harness the promise of LLMs, this tutorial offers a primer on the open-source Hugging Face ecosystem and demonstrates several applications that advance conceptual and empirical work in behavioral science, including feature extraction, fine-tuning of models for prediction, and generation of behavioral responses. Executable code is made available at github.com/Zak-Hussain/LLM4BeSci.git . Finally, the tutorial discusses challenges faced by research with (open-source) LLMs related to interpretability and safety and offers a perspective on future research at the intersection of language modeling and behavioral science.

Abstract Image

行为科学开源大型语言模型教程。
大型语言模型(LLMs)可以加速和改善从概念化到数据分析的研究周期,从而有可能彻底改变行为科学。与封闭源代码的解决方案不同,LLMs 的开源框架可以实现透明性、可重复性并遵守数据保护标准,这为它们在行为科学领域的应用提供了至关重要的优势。为了帮助研究人员利用 LLMs 的前景,本教程提供了有关开源 Hugging Face 生态系统的入门知识,并演示了几种推进行为科学概念和实证工作的应用,包括特征提取、预测模型的微调和行为反应的生成。可执行代码可在 github.com/Zak-Hussain/LLM4BeSci.git 上获取。最后,教程讨论了使用(开源)LLM 进行研究时面临的与可解释性和安全性相关的挑战,并对语言建模和行为科学交叉领域的未来研究提出了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信