{"title":"S-asymptotically $$\\omega $$ -periodic solutions for time-space fractional nonlocal reaction-diffusion equation with superlinear growth nonlinear terms","authors":"Pengyu Chen, Kaibo Ding, Xuping Zhang","doi":"10.1007/s13540-024-00325-w","DOIUrl":null,"url":null,"abstract":"<p>This paper study a class of time-space fractional reaction-diffusion equations with nonlocal initial conditions and construct an abstract theory in fractional power spaces to discuss the results related <i>S</i>-asymptotically <span>\\(\\omega \\)</span>-periodic mild solutions. When the coefficients are sufficiently small, under the condition that the nonlinear term can grow any number of orders, we discuss the existence and uniqueness of <i>S</i>-asymptotically <span>\\(\\omega \\)</span>-periodic solutions based on the theory of operator semigroups and fixed point theorem. In addition, we considered the Mittag-Leffler-Ulam-Hyers stability results using the singular type Gronwall inequality and appropriate fractional calculus. The results in the present paper extended the work of (Andrade et al. in Proc Edinb Math Soc 59:65–76, 2016) to the case of time-space fractional nonlocal reaction-diffusion equations.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"80 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00325-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper study a class of time-space fractional reaction-diffusion equations with nonlocal initial conditions and construct an abstract theory in fractional power spaces to discuss the results related S-asymptotically \(\omega \)-periodic mild solutions. When the coefficients are sufficiently small, under the condition that the nonlinear term can grow any number of orders, we discuss the existence and uniqueness of S-asymptotically \(\omega \)-periodic solutions based on the theory of operator semigroups and fixed point theorem. In addition, we considered the Mittag-Leffler-Ulam-Hyers stability results using the singular type Gronwall inequality and appropriate fractional calculus. The results in the present paper extended the work of (Andrade et al. in Proc Edinb Math Soc 59:65–76, 2016) to the case of time-space fractional nonlocal reaction-diffusion equations.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.