{"title":"Causal sets and an emerging continuum","authors":"S. Carlip","doi":"10.1007/s10714-024-03281-1","DOIUrl":null,"url":null,"abstract":"<div><p>Causal set theory offers a simple and elegant picture of discrete physics. But the vast majority of causal sets look nothing at all like continuum spacetimes, and must be excluded in some way to obtain a realistic theory. I describe recent results showing that almost all non-manifoldlike causal sets are, in fact, very strongly suppressed in the gravitational path integral. This does not quite demonstrate the emergence of a continuum—we do not yet understand the remaining unsuppressed causal sets well enough—but it is a significant step in that direction.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03281-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03281-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Causal set theory offers a simple and elegant picture of discrete physics. But the vast majority of causal sets look nothing at all like continuum spacetimes, and must be excluded in some way to obtain a realistic theory. I describe recent results showing that almost all non-manifoldlike causal sets are, in fact, very strongly suppressed in the gravitational path integral. This does not quite demonstrate the emergence of a continuum—we do not yet understand the remaining unsuppressed causal sets well enough—but it is a significant step in that direction.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.