Placido Mursia;Francesco Devoti;Marco Rossanese;Vincenzo Sciancalepore;Gabriele Gradoni;Marco Di Renzo;Xavier Costa-Pérez
{"title":"T3DRIS: Advancing Conformal RIS Design Through In-Depth Analysis of Mutual Coupling Effects","authors":"Placido Mursia;Francesco Devoti;Marco Rossanese;Vincenzo Sciancalepore;Gabriele Gradoni;Marco Di Renzo;Xavier Costa-Pérez","doi":"10.1109/TCOMM.2024.3443738","DOIUrl":null,"url":null,"abstract":"This paper presents a theoretical and mathematical framework for the design of a conformal reconfigurable intelligent surface (RIS) that adapts to non-planar geometries, which is a critical advancement for the deployment of RIS on non-planar and irregular surfaces as envisioned in smart radio environments. Previous research focused mainly on the optimization of RISs assuming a predetermined shape, while neglecting the intricate interplay between shape optimization, phase optimization, and mutual coupling effects. Our contribution, the Tailored 3D RIS (T3DRIS) framework, addresses this fundamental problem by integrating the configuration and shape optimization of RISs into a unified model and design framework, thus facilitating the application of RIS technology to a wider spectrum of environmental objects. The mathematical core of T3DRIS is rooted in optimizing the 3D deployment of the unit cells and tuning circuits, aiming at maximizing the communication performance. Through rigorous full-wave simulations and a comprehensive set of numerical analyses, we validate the proposed approach and demonstrate its superior performance and applicability over contemporary designs. This study—the first of its kind—paves the way for a new direction in RIS research, emphasizing the importance of a theoretical and mathematical perspective in tackling the challenges of conformal RISs.","PeriodicalId":13041,"journal":{"name":"IEEE Transactions on Communications","volume":"73 2","pages":"889-903"},"PeriodicalIF":8.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636283/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a theoretical and mathematical framework for the design of a conformal reconfigurable intelligent surface (RIS) that adapts to non-planar geometries, which is a critical advancement for the deployment of RIS on non-planar and irregular surfaces as envisioned in smart radio environments. Previous research focused mainly on the optimization of RISs assuming a predetermined shape, while neglecting the intricate interplay between shape optimization, phase optimization, and mutual coupling effects. Our contribution, the Tailored 3D RIS (T3DRIS) framework, addresses this fundamental problem by integrating the configuration and shape optimization of RISs into a unified model and design framework, thus facilitating the application of RIS technology to a wider spectrum of environmental objects. The mathematical core of T3DRIS is rooted in optimizing the 3D deployment of the unit cells and tuning circuits, aiming at maximizing the communication performance. Through rigorous full-wave simulations and a comprehensive set of numerical analyses, we validate the proposed approach and demonstrate its superior performance and applicability over contemporary designs. This study—the first of its kind—paves the way for a new direction in RIS research, emphasizing the importance of a theoretical and mathematical perspective in tackling the challenges of conformal RISs.
期刊介绍:
The IEEE Transactions on Communications is dedicated to publishing high-quality manuscripts that showcase advancements in the state-of-the-art of telecommunications. Our scope encompasses all aspects of telecommunications, including telephone, telegraphy, facsimile, and television, facilitated by electromagnetic propagation methods such as radio, wire, aerial, underground, coaxial, and submarine cables, as well as waveguides, communication satellites, and lasers. We cover telecommunications in various settings, including marine, aeronautical, space, and fixed station services, addressing topics such as repeaters, radio relaying, signal storage, regeneration, error detection and correction, multiplexing, carrier techniques, communication switching systems, data communications, and communication theory. Join us in advancing the field of telecommunications through groundbreaking research and innovation.