{"title":"Wave propagation analysis of the overhead conductor rail system based on numerical simulation and full-scale experiment","authors":"","doi":"10.1016/j.mechmachtheory.2024.105769","DOIUrl":null,"url":null,"abstract":"<div><p>The overhead conductor rail system (OCR) is an important current-transmitting structure for electric trains in tunnels. As the train speed increases, the wave propagation behaviour in the OCR plays an ever-increasingly important role in affecting the current collection quality. This paper is the first endeavour to numerically and experimentally explore wave behaviours in the OCR. With the help of a finite element model, the spatial propagation and frequency-domain characteristics of the wave propagation are investigated. Based on the time-space distribution of waves, the wave speed of the OCR is identified. Subsequently, a full-scale experimental test is conducted to identify a real-life OCR's wave speed for the first time. The relative error between the simulated and experimental speed is only 5.50 %, highlighting the effectiveness of the presented model. Then, the influence of wave propagation on the interaction performance of pantograph-OCR is analysed. A significant reduction of the interaction performance is observed when the train speed approaches the wave speed. Through sensitivity analysis, the bending stiffness, the linear density, and the span length are identified as sensitive parameters affecting the wave speed.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001964","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The overhead conductor rail system (OCR) is an important current-transmitting structure for electric trains in tunnels. As the train speed increases, the wave propagation behaviour in the OCR plays an ever-increasingly important role in affecting the current collection quality. This paper is the first endeavour to numerically and experimentally explore wave behaviours in the OCR. With the help of a finite element model, the spatial propagation and frequency-domain characteristics of the wave propagation are investigated. Based on the time-space distribution of waves, the wave speed of the OCR is identified. Subsequently, a full-scale experimental test is conducted to identify a real-life OCR's wave speed for the first time. The relative error between the simulated and experimental speed is only 5.50 %, highlighting the effectiveness of the presented model. Then, the influence of wave propagation on the interaction performance of pantograph-OCR is analysed. A significant reduction of the interaction performance is observed when the train speed approaches the wave speed. Through sensitivity analysis, the bending stiffness, the linear density, and the span length are identified as sensitive parameters affecting the wave speed.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry