Smooth transition and Gibbs oscillation minimization in a 7-point subdivision scheme with shape-control parameters for high smoothness

IF 1.4 Q2 MATHEMATICS, APPLIED
Rabia Hameed , Ghulam Mustafa , Tayyabah Latif , Samsul Ariffin Abdul Karim
{"title":"Smooth transition and Gibbs oscillation minimization in a 7-point subdivision scheme with shape-control parameters for high smoothness","authors":"Rabia Hameed ,&nbsp;Ghulam Mustafa ,&nbsp;Tayyabah Latif ,&nbsp;Samsul Ariffin Abdul Karim","doi":"10.1016/j.rinam.2024.100485","DOIUrl":null,"url":null,"abstract":"<div><p>Computer graphics is a dynamic field that heavily relies on mathematical techniques. For instance, subdivision scheme is used to create smooth and visually appealing curves and surfaces of arbitrary topology. The primary focus of this study is to transform two 5-point binary subdivision schemes into a single 7-point binary subdivision scheme with shape control. We have merged two binary approximating schemes that were constructed using the uniform B-spline basis function and the Lagrange basis function into a new subdivision scheme. It has been demonstrated that, for fixed values of the global shape control parameters, the curves generated by the proposed 7-point binary subdivision scheme maintain <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span> continuity everywhere. Furthermore, a brief discussion on the analysis of the Gibbs phenomenon in the new subdivision scheme has been presented. This is also a reminder of the challenges and intricacies involved in computer graphics and geometric modeling.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100485"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000554/pdfft?md5=4803d54ddef3cb635f80256af567821a&pid=1-s2.0-S2590037424000554-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Computer graphics is a dynamic field that heavily relies on mathematical techniques. For instance, subdivision scheme is used to create smooth and visually appealing curves and surfaces of arbitrary topology. The primary focus of this study is to transform two 5-point binary subdivision schemes into a single 7-point binary subdivision scheme with shape control. We have merged two binary approximating schemes that were constructed using the uniform B-spline basis function and the Lagrange basis function into a new subdivision scheme. It has been demonstrated that, for fixed values of the global shape control parameters, the curves generated by the proposed 7-point binary subdivision scheme maintain C6 continuity everywhere. Furthermore, a brief discussion on the analysis of the Gibbs phenomenon in the new subdivision scheme has been presented. This is also a reminder of the challenges and intricacies involved in computer graphics and geometric modeling.

带形状控制参数的 7 点细分方案中的平滑过渡和吉布斯振荡最小化,实现高平滑度
计算机制图是一个非常依赖数学技术的动态领域。例如,细分方案可用于创建任意拓扑结构的平滑且具有视觉吸引力的曲线和曲面。本研究的主要重点是将两个 5 点二进制细分方案转化为一个具有形状控制功能的 7 点二进制细分方案。我们将使用均匀 B-样条曲线基函数和拉格朗日基函数构建的两个二进制逼近方案合并为一个新的细分方案。结果表明,对于全局形状控制参数的固定值,所提出的 7 点二进制细分方案生成的曲线在任何地方都能保持 C6 连续性。此外,还简要讨论了新细分方案中吉布斯现象的分析。这也提醒我们计算机制图和几何建模所面临的挑战和复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信