Shuang Wu, Joni Tsukuda, Nancy Chiang, To Hao, Yongmei Chen, Isidro Hötzel, Sowmya Balasubramanian, Gerald Nakamura, Ryan L Kelly
{"title":"High titer expression of antibodies using linear expression cassettes for early-stage functional screening.","authors":"Shuang Wu, Joni Tsukuda, Nancy Chiang, To Hao, Yongmei Chen, Isidro Hötzel, Sowmya Balasubramanian, Gerald Nakamura, Ryan L Kelly","doi":"10.1093/protein/gzae012","DOIUrl":null,"url":null,"abstract":"<p><p>Antibody discovery processes are continually advancing, with an ever-increasing number of potential binding sequences being identified out of in vivo, in vitro, and in silico sources. In this work we describe a rapid system for high yield recombinant antibody (IgG and Fab) expression using Gibson assembled linear DNA fragments (GLFs). The purified recombinant antibody yields from 1 ml expression for this process are approximately five to ten-fold higher than previous methods, largely due to novel usage of protecting flanking sequences on the 5' and 3' ends of the GLF. This method is adaptable for small scale (1 ml) expression and purification for rapid evaluation of binding and activity, in addition to larger scales (30 ml) for more sensitive assays requiring milligram quantities of antibody purified over two columns (Protein A and size exclusion chromatography). When compared to plasmid-based expression, these methods provide nearly equivalent yield of high-quality material across multiple applications, allowing for reduced costs and turnaround times to enhance the antibody discovery process.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzae012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibody discovery processes are continually advancing, with an ever-increasing number of potential binding sequences being identified out of in vivo, in vitro, and in silico sources. In this work we describe a rapid system for high yield recombinant antibody (IgG and Fab) expression using Gibson assembled linear DNA fragments (GLFs). The purified recombinant antibody yields from 1 ml expression for this process are approximately five to ten-fold higher than previous methods, largely due to novel usage of protecting flanking sequences on the 5' and 3' ends of the GLF. This method is adaptable for small scale (1 ml) expression and purification for rapid evaluation of binding and activity, in addition to larger scales (30 ml) for more sensitive assays requiring milligram quantities of antibody purified over two columns (Protein A and size exclusion chromatography). When compared to plasmid-based expression, these methods provide nearly equivalent yield of high-quality material across multiple applications, allowing for reduced costs and turnaround times to enhance the antibody discovery process.
期刊介绍:
Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.