{"title":"Trends on Nanomedicines as Novel therapeutics Approach in Targeting Nociceptors for Relieving Pain.","authors":"Trilochan Satapathy, Deepak Sahu, Himanshu Sahu, Ravindra Kumar Pandey, Shiv Shankar Shukla, Beena Gidwani","doi":"10.2174/0113894501315521240725065617","DOIUrl":null,"url":null,"abstract":"<p><p>An important sensation that warns of potential harm to a specific area of the body is pain. The prevalence of pain-related conditions globally is a significant and growing public health issue. Chronic pain affects an estimated 1.5 billion people worldwide, with prevalence rates varying by region and demographic factors. Along with diabetes, cardiovascular disease, and cancer, pain is among the most frequent medical diseases. Opioid analgesics are the mainstay of current pain therapies, which are ineffective. Opioid addiction and its potentially fatal side effects necessitate novel treatment strategies. Nanotechnology offers potential advantages in pain management by enabling targeted drug delivery, which can enhance the efficacy and reduce the side effects of analgesic medications. Additionally, nanoparticles can be designed to release drugs in a controlled manner, improving pain relief duration and consistency. This approach also allows for the delivery of therapeutics across biological barriers, potentially enhancing treatment outcomes for chronic pain conditions. Nanomedicine enables sensitive and focused treatments with fewer side effects than existing clinical pain medicines; it is worth exploring as a potential solution to these problems. Furthermore, medication delivery systems that use nanomaterials are being used to treat pain. Whether it's the distribution of a single medication or a combination of therapies, this review seeks to summarise the ways in which drug delivery systems based on nanomaterials can be utilised to successfully treat and alleviate pain. For the purpose of writing this paper, we consulted several online libraries, including Pubmed, Science Direct, Pubmed Prime, and the Cochrane Library, to gather fresh and up-to-date material. This overview delves into the ins and outs of pain's pathophysiology, the present state of pain treatment, potential new pain treatment targets, and the various initiatives that have been launched and are still in the works to address pain with nanotechnology. Recent developments in nanomaterials-based scavenging, gene therapy for pain aetiology, and nanoparticle-based medicine delivery for side effect reduction are highlighted. Analgesics have been further covered in our discussion on FDA-approved pharmaceuticals and clinical advancements.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113894501315521240725065617","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
An important sensation that warns of potential harm to a specific area of the body is pain. The prevalence of pain-related conditions globally is a significant and growing public health issue. Chronic pain affects an estimated 1.5 billion people worldwide, with prevalence rates varying by region and demographic factors. Along with diabetes, cardiovascular disease, and cancer, pain is among the most frequent medical diseases. Opioid analgesics are the mainstay of current pain therapies, which are ineffective. Opioid addiction and its potentially fatal side effects necessitate novel treatment strategies. Nanotechnology offers potential advantages in pain management by enabling targeted drug delivery, which can enhance the efficacy and reduce the side effects of analgesic medications. Additionally, nanoparticles can be designed to release drugs in a controlled manner, improving pain relief duration and consistency. This approach also allows for the delivery of therapeutics across biological barriers, potentially enhancing treatment outcomes for chronic pain conditions. Nanomedicine enables sensitive and focused treatments with fewer side effects than existing clinical pain medicines; it is worth exploring as a potential solution to these problems. Furthermore, medication delivery systems that use nanomaterials are being used to treat pain. Whether it's the distribution of a single medication or a combination of therapies, this review seeks to summarise the ways in which drug delivery systems based on nanomaterials can be utilised to successfully treat and alleviate pain. For the purpose of writing this paper, we consulted several online libraries, including Pubmed, Science Direct, Pubmed Prime, and the Cochrane Library, to gather fresh and up-to-date material. This overview delves into the ins and outs of pain's pathophysiology, the present state of pain treatment, potential new pain treatment targets, and the various initiatives that have been launched and are still in the works to address pain with nanotechnology. Recent developments in nanomaterials-based scavenging, gene therapy for pain aetiology, and nanoparticle-based medicine delivery for side effect reduction are highlighted. Analgesics have been further covered in our discussion on FDA-approved pharmaceuticals and clinical advancements.
期刊介绍:
Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes.
Current Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of drug targets. The journal also accepts for publication mini- & full-length review articles and drug clinical trial studies.
As the discovery, identification, characterization and validation of novel human drug targets for drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.