Structural Basis of Substrate Recognition by the Postmitosane Modification Enzyme MitM in Mitomycin Biosynthesis.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2024-09-03 Epub Date: 2024-08-14 DOI:10.1021/acs.biochem.4c00330
Danna Dong, Mingyu Xia, Sili Wang, Pengfei Fang, Wen Liu
{"title":"Structural Basis of Substrate Recognition by the Postmitosane Modification Enzyme MitM in Mitomycin Biosynthesis.","authors":"Danna Dong, Mingyu Xia, Sili Wang, Pengfei Fang, Wen Liu","doi":"10.1021/acs.biochem.4c00330","DOIUrl":null,"url":null,"abstract":"<p><p>Mitomycins make up a class of natural molecules produced by <i>Streptomyces</i> with strong antibacterial and antitumor activities. MitM is a key postmitosane modification enzyme involved in mitomycin biosynthesis in <i>Streptomyces caespitosus</i>. This protein was previously suggested to catalyze the aziridinium methylation of mitomycin A and the mitomycin intermediate 9a-demethyl-mitomycin A as an <i>N</i>-methyltransferase. The structural basis for MitM to recognize cofactor <i>S</i>-adenosyl-l-methionine (SAM) and substrate mitomycin A is unknown. Here, we determined the crystal structures of <i>apo</i>-MitM and MitM-mitomycin A-<i>S</i>-adenosylhomocysteine (SAH) ternary complexes with resolutions of 2.23 and 2.80 Å, respectively. We found that MitM adopts a class I SAM-dependent methyltransferase fold and forms a homodimer in solution. Conformational changes in a series of residues involved in the formation of active pockets assist MitM in binding SAH and mitomycin A. In particular, the <sub>28</sub>ALGAASLGE<sub>36</sub> loop changes most significantly. When mitomycin A binds, the bending direction of this loop is reversed, changing the entrance of the active site from open to closed. This study provides structural insights into MitM's involvement in the postmitosane stage of mitomycin biosynthesis and provides a template for the engineering of methyltransferases.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00330","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitomycins make up a class of natural molecules produced by Streptomyces with strong antibacterial and antitumor activities. MitM is a key postmitosane modification enzyme involved in mitomycin biosynthesis in Streptomyces caespitosus. This protein was previously suggested to catalyze the aziridinium methylation of mitomycin A and the mitomycin intermediate 9a-demethyl-mitomycin A as an N-methyltransferase. The structural basis for MitM to recognize cofactor S-adenosyl-l-methionine (SAM) and substrate mitomycin A is unknown. Here, we determined the crystal structures of apo-MitM and MitM-mitomycin A-S-adenosylhomocysteine (SAH) ternary complexes with resolutions of 2.23 and 2.80 Å, respectively. We found that MitM adopts a class I SAM-dependent methyltransferase fold and forms a homodimer in solution. Conformational changes in a series of residues involved in the formation of active pockets assist MitM in binding SAH and mitomycin A. In particular, the 28ALGAASLGE36 loop changes most significantly. When mitomycin A binds, the bending direction of this loop is reversed, changing the entrance of the active site from open to closed. This study provides structural insights into MitM's involvement in the postmitosane stage of mitomycin biosynthesis and provides a template for the engineering of methyltransferases.

Abstract Image

在丝裂霉素生物合成过程中,后mitosane修饰酶MitM识别底物的结构基础。
丝裂霉素是由链霉菌产生的一类天然分子,具有很强的抗菌和抗肿瘤活性。MitM 是一种参与丝裂霉素生物合成的关键后mitosane修饰酶。此前曾有研究认为,该蛋白作为一种 N-甲基转移酶,可催化丝裂霉素 A 和丝裂霉素中间体 9a-demethyl-mitomycin A 的氮丙啶甲基化。MitM 识别辅助因子 S-腺苷-l-蛋氨酸(SAM)和底物丝裂霉素 A 的结构基础尚不清楚。在这里,我们测定了 apo-MitM 和 MitM-mitomycin A-S-adenosylhomocysteine (SAH) 三元复合物的晶体结构,分辨率分别为 2.23 和 2.80 Å。我们发现 MitM 采用一类 SAM 依赖性甲基转移酶折叠,并在溶液中形成同源二聚体。一系列参与形成活性口袋的残基发生了构象变化,这有助于 MitM 与 SAH 和丝裂霉素 A 结合。当丝裂霉素 A 结合时,该环路的弯曲方向发生逆转,使活性位点的入口从开放变为封闭。这项研究从结构上揭示了 MitM 参与丝裂霉素生物合成的后mitosane 阶段,并为甲基转移酶的工程设计提供了模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信