{"title":"Information Velocity of Cascaded Gaussian Channels With Feedback","authors":"Elad Domanovitz;Anatoly Khina;Tal Philosof;Yuval Kochman","doi":"10.1109/JSAIT.2024.3416310","DOIUrl":null,"url":null,"abstract":"We consider a line network of nodes, connected by additive white noise channels, equipped with local feedback. We study the velocity at which information spreads over this network. For transmission of a data packet, we give an explicit positive lower bound on the velocity, for any packet size. Furthermore, we consider streaming, that is, transmission of data packets generated at a given average arrival rate. We show that a positive velocity exists as long as the arrival rate is below the individual Gaussian channel capacity, and provide an explicit lower bound. Our analysis involves applying pulse-amplitude modulation to the data (successively in the streaming case), and using linear mean-squared error estimation at the network nodes. For general white noise, we derive exponential error-probability bounds. For single-packet transmission over channels with (sub-)Gaussian noise, we show a doubly-exponential behavior, which reduces to the celebrated Schalkwijk–Kailath scheme when considering a single node. Viewing the constellation as an “analog source”, we also provide bounds on the exponential decay of the mean-squared error of source transmission over the network.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"554-569"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10561481/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a line network of nodes, connected by additive white noise channels, equipped with local feedback. We study the velocity at which information spreads over this network. For transmission of a data packet, we give an explicit positive lower bound on the velocity, for any packet size. Furthermore, we consider streaming, that is, transmission of data packets generated at a given average arrival rate. We show that a positive velocity exists as long as the arrival rate is below the individual Gaussian channel capacity, and provide an explicit lower bound. Our analysis involves applying pulse-amplitude modulation to the data (successively in the streaming case), and using linear mean-squared error estimation at the network nodes. For general white noise, we derive exponential error-probability bounds. For single-packet transmission over channels with (sub-)Gaussian noise, we show a doubly-exponential behavior, which reduces to the celebrated Schalkwijk–Kailath scheme when considering a single node. Viewing the constellation as an “analog source”, we also provide bounds on the exponential decay of the mean-squared error of source transmission over the network.