Information Velocity of Cascaded Gaussian Channels With Feedback

Elad Domanovitz;Anatoly Khina;Tal Philosof;Yuval Kochman
{"title":"Information Velocity of Cascaded Gaussian Channels With Feedback","authors":"Elad Domanovitz;Anatoly Khina;Tal Philosof;Yuval Kochman","doi":"10.1109/JSAIT.2024.3416310","DOIUrl":null,"url":null,"abstract":"We consider a line network of nodes, connected by additive white noise channels, equipped with local feedback. We study the velocity at which information spreads over this network. For transmission of a data packet, we give an explicit positive lower bound on the velocity, for any packet size. Furthermore, we consider streaming, that is, transmission of data packets generated at a given average arrival rate. We show that a positive velocity exists as long as the arrival rate is below the individual Gaussian channel capacity, and provide an explicit lower bound. Our analysis involves applying pulse-amplitude modulation to the data (successively in the streaming case), and using linear mean-squared error estimation at the network nodes. For general white noise, we derive exponential error-probability bounds. For single-packet transmission over channels with (sub-)Gaussian noise, we show a doubly-exponential behavior, which reduces to the celebrated Schalkwijk–Kailath scheme when considering a single node. Viewing the constellation as an “analog source”, we also provide bounds on the exponential decay of the mean-squared error of source transmission over the network.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"554-569"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10561481/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a line network of nodes, connected by additive white noise channels, equipped with local feedback. We study the velocity at which information spreads over this network. For transmission of a data packet, we give an explicit positive lower bound on the velocity, for any packet size. Furthermore, we consider streaming, that is, transmission of data packets generated at a given average arrival rate. We show that a positive velocity exists as long as the arrival rate is below the individual Gaussian channel capacity, and provide an explicit lower bound. Our analysis involves applying pulse-amplitude modulation to the data (successively in the streaming case), and using linear mean-squared error estimation at the network nodes. For general white noise, we derive exponential error-probability bounds. For single-packet transmission over channels with (sub-)Gaussian noise, we show a doubly-exponential behavior, which reduces to the celebrated Schalkwijk–Kailath scheme when considering a single node. Viewing the constellation as an “analog source”, we also provide bounds on the exponential decay of the mean-squared error of source transmission over the network.
带反馈的级联高斯信道的信息速度
我们考虑了一个由节点组成的线性网络,该网络通过加性白噪声信道连接,并配有局部反馈。我们研究信息在该网络中的传播速度。对于数据包的传输,无论数据包大小如何,我们都给出了速度的明确正下限。此外,我们还考虑了流式传输,即传输以给定平均到达率生成的数据包。我们证明,只要到达率低于单个高斯信道容量,就存在正速度,并给出了明确的下限。我们的分析包括对数据进行脉冲幅度调制(在流式情况下连续进行),并在网络节点使用线性均方误差估计。对于一般白噪声,我们推导出指数误差概率边界。对于在具有(亚)高斯噪声的信道上进行的单包传输,我们展示了一种双指数行为,当考虑单个节点时,这种行为简化为著名的 Schalkwijk-Kailath 方案。将星座视为 "模拟源",我们还提供了网络上源传输均方误差的指数衰减约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信