Victoria Kaial, Hervé Kerivin , Annegret K. Wagler
{"title":"On non-superperfection of edge intersection graphs of paths","authors":"Victoria Kaial, Hervé Kerivin , Annegret K. Wagler","doi":"10.1016/j.disopt.2024.100857","DOIUrl":null,"url":null,"abstract":"<div><p>The routing and spectrum assignment problem in modern flexgrid elastic optical networks asks for assigning to given demands a route in an optical network and a channel within an optical frequency spectrum so that the channels of two demands are disjoint whenever their routes share a link in the optical network. This problem can be modeled in two phases: firstly, a selection of paths in the network and, secondly, an interval coloring problem in the edge intersection graph of these paths. The interval chromatic number equals the smallest size of a spectrum such that a proper interval coloring is possible, the weighted clique number is a natural lower bound. Graphs where both parameters coincide for all possible non-negative integral weights are called superperfect. Therefore, the occurrence of non-superperfect edge intersection graphs of routing paths can provoke the need of larger spectral resources. In this work, we examine the question which minimal non-superperfect graphs can occur in the edge intersection graphs of routing paths in different underlying networks: when the network is a path, a tree, a cycle, or a sparse planar graph with small maximum degree. We show that for any possible network (even if it is restricted to a path) the resulting edge intersection graphs are not necessarily superperfect. We close with a discussion of possible consequences and of some lines of future research.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"54 ","pages":"Article 100857"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528624000367","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The routing and spectrum assignment problem in modern flexgrid elastic optical networks asks for assigning to given demands a route in an optical network and a channel within an optical frequency spectrum so that the channels of two demands are disjoint whenever their routes share a link in the optical network. This problem can be modeled in two phases: firstly, a selection of paths in the network and, secondly, an interval coloring problem in the edge intersection graph of these paths. The interval chromatic number equals the smallest size of a spectrum such that a proper interval coloring is possible, the weighted clique number is a natural lower bound. Graphs where both parameters coincide for all possible non-negative integral weights are called superperfect. Therefore, the occurrence of non-superperfect edge intersection graphs of routing paths can provoke the need of larger spectral resources. In this work, we examine the question which minimal non-superperfect graphs can occur in the edge intersection graphs of routing paths in different underlying networks: when the network is a path, a tree, a cycle, or a sparse planar graph with small maximum degree. We show that for any possible network (even if it is restricted to a path) the resulting edge intersection graphs are not necessarily superperfect. We close with a discussion of possible consequences and of some lines of future research.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.