Navigating interpretability and alpha control in GF-KCSD testing with measurement error: A Kernel approach

Elham Afzali, Saman Muthukumarana, Liqun Wang
{"title":"Navigating interpretability and alpha control in GF-KCSD testing with measurement error: A Kernel approach","authors":"Elham Afzali,&nbsp;Saman Muthukumarana,&nbsp;Liqun Wang","doi":"10.1016/j.mlwa.2024.100581","DOIUrl":null,"url":null,"abstract":"<div><p>The Gradient-Free Kernel Conditional Stein Discrepancy (GF-KCSD), presented in our prior work, represents a significant advancement in goodness-of-fit testing for conditional distributions. This method offers a robust alternative to previous gradient-based techniques, specially when the gradient calculation is intractable or computationally expensive. In this study, we explore previously unexamined aspects of GF-KCSD, with a particular focus on critical values and test power—essential components for effective hypothesis testing. We also present novel investigation on the impact of measurement errors on the performance of GF-KCSD in comparison to established benchmarks, enhancing our understanding of its resilience to these errors. Through controlled experiments using synthetic data, we demonstrate GF-KCSD’s superior ability to control type-I error rates and maintain high statistical power, even in the presence of measurement inaccuracies. Our empirical evaluation extends to real-world datasets, including brain MRI data. The findings confirm that GF-KCSD performs comparably to KCSD in hypothesis testing effectiveness while requiring significantly less computational time. This demonstrates GF-KCSD’s capability as an efficient tool for analyzing complex data, enhancing its value for scenarios that demand rapid and robust statistical analysis.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"17 ","pages":"Article 100581"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827024000574/pdfft?md5=64343827db2919a23c638fc11f2df65c&pid=1-s2.0-S2666827024000574-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Gradient-Free Kernel Conditional Stein Discrepancy (GF-KCSD), presented in our prior work, represents a significant advancement in goodness-of-fit testing for conditional distributions. This method offers a robust alternative to previous gradient-based techniques, specially when the gradient calculation is intractable or computationally expensive. In this study, we explore previously unexamined aspects of GF-KCSD, with a particular focus on critical values and test power—essential components for effective hypothesis testing. We also present novel investigation on the impact of measurement errors on the performance of GF-KCSD in comparison to established benchmarks, enhancing our understanding of its resilience to these errors. Through controlled experiments using synthetic data, we demonstrate GF-KCSD’s superior ability to control type-I error rates and maintain high statistical power, even in the presence of measurement inaccuracies. Our empirical evaluation extends to real-world datasets, including brain MRI data. The findings confirm that GF-KCSD performs comparably to KCSD in hypothesis testing effectiveness while requiring significantly less computational time. This demonstrates GF-KCSD’s capability as an efficient tool for analyzing complex data, enhancing its value for scenarios that demand rapid and robust statistical analysis.

在有测量误差的 GF-KCSD 测试中控制可解释性和阿尔法:核方法
无梯度核条件斯泰因差异(GF-KCSD)在我们之前的工作中已经提出,它代表了条件分布拟合优度测试的一大进步。这种方法为以前基于梯度的技术提供了一种稳健的替代方法,尤其是在梯度计算难以实现或计算成本高昂的情况下。在本研究中,我们探索了 GF-KCSD 以前未曾研究过的方面,特别是临界值和检验功率--有效假设检验的重要组成部分。与已有的基准相比,我们还对测量误差对 GF-KCSD 性能的影响进行了新颖的研究,从而加深了我们对 GF-KCSD 抵御这些误差能力的理解。通过使用合成数据进行受控实验,我们证明了 GF-KCSD 即使在存在测量误差的情况下,也能控制 I 类错误率并保持较高的统计能力。我们的实证评估扩展到了真实世界的数据集,包括脑磁共振成像数据。结果证实,GF-KCSD 在假设检验有效性方面的表现与 KCSD 不相上下,而所需的计算时间却大大减少。这证明了 GF-KCSD 作为分析复杂数据的高效工具的能力,提高了它在需要快速、稳健统计分析的应用场景中的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信