Yucheng Ji , Fei Shuang , Zhiyang Ni , Chenyang Yao , Xiao Li , Xiaoqian Fu , Zhanghua Chen , Xiaogang Li , Chaofang Dong
{"title":"Discerning the duality of H in Mg: H-induced damage and ductility","authors":"Yucheng Ji , Fei Shuang , Zhiyang Ni , Chenyang Yao , Xiao Li , Xiaoqian Fu , Zhanghua Chen , Xiaogang Li , Chaofang Dong","doi":"10.1016/j.ijplas.2024.104084","DOIUrl":null,"url":null,"abstract":"<div><p>Prone H reduction is considered an important factor in the poor corrosion resistance of Mg and its alloys, while the reduced H simultaneously impacts their mechanical properties whose mechanism is still unclear. It can be experimentally found that the elongation of Mg charged with atomic H is 2.76 % greater than that in air. To reveal the underlying physics, multi-scale modeling combining first-principle calculation, molecular dynamic/static (MD/MS) simulation, and crystal plasticity finite element method (CPFEM) is first employed to elaborate the influence of H on Mg at different length scales. The first-principle results show that the Prism-I {10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>0} exhibits the most corrosive nature with an effective H adsorption density that reaches 18 nm<sup>−2</sup> and its diffusion barrier is only 0.156 eV <em>H</em><sup>−1</sup>. Conversely, the Basal {0001} has the best surficial H resistance. After H infiltration into the Mg matrix, the generalized stacking fault energies of most twining planes decrease by 2.26 % ∼18.49 %. Especially for the Basal {0001}, the H not only lowers its stacking fault energy to -7.13 J <em>m</em><sup>−2</sup>, but also impedes its cleavage cracking along [10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>0] according to the MD/MS simulation. The presence of H within the grains induces early initiation of stacking fault and elevates the critical stress at the crack tips. The CPFEM modeling reveals that the difference in twining growth is concentrated within 4 % strain. The H addition promotes the twining of Mg, however, following 4 % strain, the relative activity of planes in the Mg/Mg-H models is consistent.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104084"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002110","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Prone H reduction is considered an important factor in the poor corrosion resistance of Mg and its alloys, while the reduced H simultaneously impacts their mechanical properties whose mechanism is still unclear. It can be experimentally found that the elongation of Mg charged with atomic H is 2.76 % greater than that in air. To reveal the underlying physics, multi-scale modeling combining first-principle calculation, molecular dynamic/static (MD/MS) simulation, and crystal plasticity finite element method (CPFEM) is first employed to elaborate the influence of H on Mg at different length scales. The first-principle results show that the Prism-I {100} exhibits the most corrosive nature with an effective H adsorption density that reaches 18 nm−2 and its diffusion barrier is only 0.156 eV H−1. Conversely, the Basal {0001} has the best surficial H resistance. After H infiltration into the Mg matrix, the generalized stacking fault energies of most twining planes decrease by 2.26 % ∼18.49 %. Especially for the Basal {0001}, the H not only lowers its stacking fault energy to -7.13 J m−2, but also impedes its cleavage cracking along [100] according to the MD/MS simulation. The presence of H within the grains induces early initiation of stacking fault and elevates the critical stress at the crack tips. The CPFEM modeling reveals that the difference in twining growth is concentrated within 4 % strain. The H addition promotes the twining of Mg, however, following 4 % strain, the relative activity of planes in the Mg/Mg-H models is consistent.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.