Balancing efficacy and computational burden: weighted mean, multiple imputation, and inverse probability weighting methods for item non-response in reliable scales.
IF 4.7 2区 医学Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Andrew Guide, Shawn Garbett, Xiaoke Feng, Brandy M Mapes, Justin Cook, Lina Sulieman, Robert M Cronin, Qingxia Chen
{"title":"Balancing efficacy and computational burden: weighted mean, multiple imputation, and inverse probability weighting methods for item non-response in reliable scales.","authors":"Andrew Guide, Shawn Garbett, Xiaoke Feng, Brandy M Mapes, Justin Cook, Lina Sulieman, Robert M Cronin, Qingxia Chen","doi":"10.1093/jamia/ocae217","DOIUrl":null,"url":null,"abstract":"<p><strong>Importance: </strong>Scales often arise from multi-item questionnaires, yet commonly face item non-response. Traditional solutions use weighted mean (WMean) from available responses, but potentially overlook missing data intricacies. Advanced methods like multiple imputation (MI) address broader missing data, but demand increased computational resources. Researchers frequently use survey data in the All of Us Research Program (All of Us), and it is imperative to determine if the increased computational burden of employing MI to handle non-response is justifiable.</p><p><strong>Objectives: </strong>Using the 5-item Physical Activity Neighborhood Environment Scale (PANES) in All of Us, this study assessed the tradeoff between efficacy and computational demands of WMean, MI, and inverse probability weighting (IPW) when dealing with item non-response.</p><p><strong>Materials and methods: </strong>Synthetic missingness, allowing 1 or more item non-response, was introduced into PANES across 3 missing mechanisms and various missing percentages (10%-50%). Each scenario compared WMean of complete questions, MI, and IPW on bias, variability, coverage probability, and computation time.</p><p><strong>Results: </strong>All methods showed minimal biases (all <5.5%) for good internal consistency, with WMean suffered most with poor consistency. IPW showed considerable variability with increasing missing percentage. MI required significantly more computational resources, taking >8000 and >100 times longer than WMean and IPW in full data analysis, respectively.</p><p><strong>Discussion and conclusion: </strong>The marginal performance advantages of MI for item non-response in highly reliable scales do not warrant its escalated cloud computational burden in All of Us, particularly when coupled with computationally demanding post-imputation analyses. Researchers using survey scales with low missingness could utilize WMean to reduce computing burden.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae217","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Importance: Scales often arise from multi-item questionnaires, yet commonly face item non-response. Traditional solutions use weighted mean (WMean) from available responses, but potentially overlook missing data intricacies. Advanced methods like multiple imputation (MI) address broader missing data, but demand increased computational resources. Researchers frequently use survey data in the All of Us Research Program (All of Us), and it is imperative to determine if the increased computational burden of employing MI to handle non-response is justifiable.
Objectives: Using the 5-item Physical Activity Neighborhood Environment Scale (PANES) in All of Us, this study assessed the tradeoff between efficacy and computational demands of WMean, MI, and inverse probability weighting (IPW) when dealing with item non-response.
Materials and methods: Synthetic missingness, allowing 1 or more item non-response, was introduced into PANES across 3 missing mechanisms and various missing percentages (10%-50%). Each scenario compared WMean of complete questions, MI, and IPW on bias, variability, coverage probability, and computation time.
Results: All methods showed minimal biases (all <5.5%) for good internal consistency, with WMean suffered most with poor consistency. IPW showed considerable variability with increasing missing percentage. MI required significantly more computational resources, taking >8000 and >100 times longer than WMean and IPW in full data analysis, respectively.
Discussion and conclusion: The marginal performance advantages of MI for item non-response in highly reliable scales do not warrant its escalated cloud computational burden in All of Us, particularly when coupled with computationally demanding post-imputation analyses. Researchers using survey scales with low missingness could utilize WMean to reduce computing burden.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.