Physiological presentation and risk factors of long COVID in the UK using smartphones and wearable devices: a longitudinal, citizen science, case–control study

IF 23.8 1区 医学 Q1 MEDICAL INFORMATICS
{"title":"Physiological presentation and risk factors of long COVID in the UK using smartphones and wearable devices: a longitudinal, citizen science, case–control study","authors":"","doi":"10.1016/S2589-7500(24)00140-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The emergence of long COVID as a COVID-19 sequela was largely syndromic in characterisation. Digital health technologies such as wearable devices open the possibility to study this condition with passive, objective data in addition to self-reported symptoms. We aimed to quantify the prevalence and severity of symptoms across collected mobile health metrics over 12 weeks following COVID-19 diagnosis and to identify risk factors for the development of post-COVID-19 condition (also known as long COVID).</p></div><div><h3>Methods</h3><p>The Covid Collab study was a longitudinal, self-enrolled, community, case–control study. We recruited participants from the UK through a smartphone app, media publications, and promotion within the Fitbit app between Aug 28, 2020, and May 31, 2021. Adults (aged ≥18 years) who reported a COVID-19 diagnosis with a positive antigen or PCR test before Feb 1, 2022, were eligible for inclusion. We compared a cohort of 1200 patients who tested positive for COVID-19 with a cohort of 3600 sex-matched and age-matched controls without a COVID-19 diagnosis. Participants could provide information on COVID-19 symptoms and mental health through self-reported questionnaires (active data) and commercial wearable fitness devices (passive data). Data were compared between cohorts at three periods following diagnosis: acute COVID-19 (0–4 weeks), ongoing COVID-19 (4–12 weeks), and post-COVID-19 (12–16 weeks). We assessed sociodemographic and mobile health risk factors for the development of long COVID (defined as either a persistent change in a physiological signal or self-reported symptoms for ≥12 weeks after COVID-19 diagnosis).</p></div><div><h3>Findings</h3><p>By Aug 1, 2022, 17 667 participants had enrolled into the study, of whom 1200 (6·8%) cases and 3600 (20·4%) controls were included in the analyses. Compared with baseline (65 beats per min), resting heart rate increased significantly during the acute (0·47 beats per min; odds ratio [OR] 1·06 [95% CI 1·03–1·09]; p&lt;0·0001), ongoing (0·99 beats per min; 1·11 [1·08–1·14]; p&lt;0·0001), and post-COVID-19 (0·52 beats per min; 1·04 [1·02–1·07]; p=0·0017) phases. An increased level of historical activity in the period from 24 months to 6 months preceding COVID-19 diagnosis was protective against long COVID (coefficient –0·017 [95% CI –0·030 to –0·003]; p=0·015). Depressive symptoms were persistently elevated following COVID-19 (OR 1·03 [95% CI 1·01–1·06]; p=0·0033) and were a potential risk factor for developing long COVID (1·14 [1·07–1·22]; p&lt;0·0001).</p></div><div><h3>Interpretation</h3><p>Mobile health technologies and commercial wearable devices might prove to be a useful resource for tracking recovery from COVID-19 and the prevalence of its long-term sequelae, as well as representing an abundant source of historical data. Mental wellbeing can be impacted negatively for an extended period following COVID-19.</p></div><div><h3>Funding</h3><p>National Institute for Health and Care Research (NIHR), NIHR Maudsley Biomedical Research Centre, UK Research and Innovation, and Medical Research Council.</p></div>","PeriodicalId":48534,"journal":{"name":"Lancet Digital Health","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589750024001407/pdfft?md5=41fde3576005e91fa40bb70d2e644041&pid=1-s2.0-S2589750024001407-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Digital Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589750024001407","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The emergence of long COVID as a COVID-19 sequela was largely syndromic in characterisation. Digital health technologies such as wearable devices open the possibility to study this condition with passive, objective data in addition to self-reported symptoms. We aimed to quantify the prevalence and severity of symptoms across collected mobile health metrics over 12 weeks following COVID-19 diagnosis and to identify risk factors for the development of post-COVID-19 condition (also known as long COVID).

Methods

The Covid Collab study was a longitudinal, self-enrolled, community, case–control study. We recruited participants from the UK through a smartphone app, media publications, and promotion within the Fitbit app between Aug 28, 2020, and May 31, 2021. Adults (aged ≥18 years) who reported a COVID-19 diagnosis with a positive antigen or PCR test before Feb 1, 2022, were eligible for inclusion. We compared a cohort of 1200 patients who tested positive for COVID-19 with a cohort of 3600 sex-matched and age-matched controls without a COVID-19 diagnosis. Participants could provide information on COVID-19 symptoms and mental health through self-reported questionnaires (active data) and commercial wearable fitness devices (passive data). Data were compared between cohorts at three periods following diagnosis: acute COVID-19 (0–4 weeks), ongoing COVID-19 (4–12 weeks), and post-COVID-19 (12–16 weeks). We assessed sociodemographic and mobile health risk factors for the development of long COVID (defined as either a persistent change in a physiological signal or self-reported symptoms for ≥12 weeks after COVID-19 diagnosis).

Findings

By Aug 1, 2022, 17 667 participants had enrolled into the study, of whom 1200 (6·8%) cases and 3600 (20·4%) controls were included in the analyses. Compared with baseline (65 beats per min), resting heart rate increased significantly during the acute (0·47 beats per min; odds ratio [OR] 1·06 [95% CI 1·03–1·09]; p<0·0001), ongoing (0·99 beats per min; 1·11 [1·08–1·14]; p<0·0001), and post-COVID-19 (0·52 beats per min; 1·04 [1·02–1·07]; p=0·0017) phases. An increased level of historical activity in the period from 24 months to 6 months preceding COVID-19 diagnosis was protective against long COVID (coefficient –0·017 [95% CI –0·030 to –0·003]; p=0·015). Depressive symptoms were persistently elevated following COVID-19 (OR 1·03 [95% CI 1·01–1·06]; p=0·0033) and were a potential risk factor for developing long COVID (1·14 [1·07–1·22]; p<0·0001).

Interpretation

Mobile health technologies and commercial wearable devices might prove to be a useful resource for tracking recovery from COVID-19 and the prevalence of its long-term sequelae, as well as representing an abundant source of historical data. Mental wellbeing can be impacted negatively for an extended period following COVID-19.

Funding

National Institute for Health and Care Research (NIHR), NIHR Maudsley Biomedical Research Centre, UK Research and Innovation, and Medical Research Council.

英国长期使用智能手机和可穿戴设备的 COVID 的生理表现和风险因素:一项纵向、公民科学、病例对照研究。
背景:长 COVID 作为 COVID-19 后遗症的出现在很大程度上是综合征的特征。除自我报告的症状外,可穿戴设备等数字健康技术为利用被动、客观的数据研究这一病症提供了可能。我们的目标是量化 COVID-19 诊断后 12 周内收集到的移动健康指标的症状发生率和严重程度,并确定 COVID-19 后遗症(又称长 COVID)发展的风险因素:Covid Collab研究是一项自我注册的纵向社区病例对照研究。我们在 2020 年 8 月 28 日至 2021 年 5 月 31 日期间通过智能手机应用程序、媒体出版物和 Fitbit 应用程序中的推广活动在英国招募参与者。凡在 2022 年 2 月 1 日前报告 COVID-19 诊断且抗原或 PCR 检测呈阳性的成人(年龄≥18 岁)均符合纳入条件。我们将 COVID-19 检测呈阳性的 1200 名患者与未确诊 COVID-19 的 3600 名性别和年龄匹配的对照组进行了比较。参与者可通过自我报告问卷(主动数据)和商用可穿戴健身设备(被动数据)提供有关 COVID-19 症状和心理健康的信息。我们比较了不同组群在确诊后三个时期的数据:急性 COVID-19(0-4 周)、持续 COVID-19(4-12 周)和 COVID-19 后(12-16 周)。我们评估了发生长期 COVID 的社会人口和移动健康风险因素(定义为 COVID-19 诊断后≥12 周内生理信号或自我报告症状的持续变化):截至2022年8月1日,共有17 667名参与者参加了研究,其中1200名(6-8%)病例和3600名(20-4%)对照者被纳入分析。与基线(65次/分钟)相比,急性期静息心率显著增加(0-47次/分钟;几率比[OR] 1-06 [95% CI 1-03-1-09];p解释:移动健康技术和商用可穿戴设备可能会成为跟踪 COVID-19 恢复情况及其长期后遗症流行情况的有用资源,同时也是丰富的历史数据来源。在 COVID-19 之后,心理健康可能会受到长期的负面影响:国家健康与护理研究所(NIHR)、国家健康与护理研究所莫兹利生物医学研究中心(NIHR Maudsley Biomedical Research Centre)、英国研究与创新组织(UK Research and Innovation)和医学研究委员会(Medical Research Council)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
41.20
自引率
1.60%
发文量
232
审稿时长
13 weeks
期刊介绍: The Lancet Digital Health publishes important, innovative, and practice-changing research on any topic connected with digital technology in clinical medicine, public health, and global health. The journal’s open access content crosses subject boundaries, building bridges between health professionals and researchers.By bringing together the most important advances in this multidisciplinary field,The Lancet Digital Health is the most prominent publishing venue in digital health. We publish a range of content types including Articles,Review, Comment, and Correspondence, contributing to promoting digital technologies in health practice worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信