A ketogenic diet, regardless of fish oil content, does not affect glucose homeostasis or muscle insulin response in male rats.

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Joshua M Budd, Nicole M Notaro, Blair MacLeod, David M Mutch, David J Dyck
{"title":"A ketogenic diet, regardless of fish oil content, does not affect glucose homeostasis or muscle insulin response in male rats.","authors":"Joshua M Budd, Nicole M Notaro, Blair MacLeod, David M Mutch, David J Dyck","doi":"10.1152/ajpendo.00236.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Ketogenic diets (KDs) are very high in fat and low in carbohydrates. Evidence supports that KDs improve glucose metabolism in humans and rodents that are obese and/or insulin resistant. Conversely, findings in healthy rodents suggest that KDs may impair glucose homeostasis. In addition, most experimental KDs are composed of saturated and monounsaturated fatty acids, with almost no omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA). Evidence supports a beneficial role for n-3 LCPUFA on glucose homeostasis in the context of a metabolic challenge. To our knowledge, no study has examined whether the inclusion of n-3 LCPUFA affects the impact of a KD on glucose homeostasis. The objective of this study was to examine the impact of a KD on whole body glucose tolerance and skeletal muscle insulin response in rats and to determine if increasing the n-3 LCPUFA content in a KD with menhaden oil could improve metabolic outcomes. Male Sprague-Dawley rats were pair-fed one of a low-fat diet, high-fat diet, KD, or a KD supplemented with menhaden oil for 8 wk. No significant differences in whole body glucose tolerance, skeletal muscle insulin signaling, or skeletal muscle insulin-stimulated glucose uptake were detected between the dietary groups. Our findings suggest that KD feeding, with or without supplementation of n-3 LCPUFA, does not affect whole body glucose homeostasis or skeletal muscle insulin response under pair-feeding conditions.<b>NEW & NOTEWORTHY</b> Ketogenic diets (KDs) improve glucose metabolism in humans and rodents that are insulin resistant, but their impact is unclear in a healthy context. Furthermore, standard KDs typically lack beneficial omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFA). This study assessed whether supplementing a KD with n3-LCPUFA could alter glucose homeostasis or skeletal muscle insulin response. No differences were observed between a standard KD and a KD with n3-LCPUFA when energy intake was controlled.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E449-E458"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00236.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Ketogenic diets (KDs) are very high in fat and low in carbohydrates. Evidence supports that KDs improve glucose metabolism in humans and rodents that are obese and/or insulin resistant. Conversely, findings in healthy rodents suggest that KDs may impair glucose homeostasis. In addition, most experimental KDs are composed of saturated and monounsaturated fatty acids, with almost no omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA). Evidence supports a beneficial role for n-3 LCPUFA on glucose homeostasis in the context of a metabolic challenge. To our knowledge, no study has examined whether the inclusion of n-3 LCPUFA affects the impact of a KD on glucose homeostasis. The objective of this study was to examine the impact of a KD on whole body glucose tolerance and skeletal muscle insulin response in rats and to determine if increasing the n-3 LCPUFA content in a KD with menhaden oil could improve metabolic outcomes. Male Sprague-Dawley rats were pair-fed one of a low-fat diet, high-fat diet, KD, or a KD supplemented with menhaden oil for 8 wk. No significant differences in whole body glucose tolerance, skeletal muscle insulin signaling, or skeletal muscle insulin-stimulated glucose uptake were detected between the dietary groups. Our findings suggest that KD feeding, with or without supplementation of n-3 LCPUFA, does not affect whole body glucose homeostasis or skeletal muscle insulin response under pair-feeding conditions.NEW & NOTEWORTHY Ketogenic diets (KDs) improve glucose metabolism in humans and rodents that are insulin resistant, but their impact is unclear in a healthy context. Furthermore, standard KDs typically lack beneficial omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFA). This study assessed whether supplementing a KD with n3-LCPUFA could alter glucose homeostasis or skeletal muscle insulin response. No differences were observed between a standard KD and a KD with n3-LCPUFA when energy intake was controlled.

无论鱼油含量多少,生酮饮食都不会影响雄性大鼠的葡萄糖稳态或肌肉胰岛素反应。
生酮饮食(KD)是一种高脂肪、低碳水化合物的饮食。有证据表明,生酮饮食能改善肥胖和/或胰岛素抵抗的人类和啮齿动物的葡萄糖代谢。相反,对健康啮齿动物的研究结果表明,KDs 可能会损害葡萄糖稳态。此外,大多数实验性 KDs 由饱和脂肪酸和单不饱和脂肪酸组成,几乎没有欧米伽-3 长链多不饱和脂肪酸(n-3 LCPUFA)。有证据支持 n-3 LCPUFA 在新陈代谢挑战中对葡萄糖稳态的有益作用。据我们所知,目前还没有研究表明加入 n-3 LCPUFA 是否会影响 KD 对葡萄糖稳态的影响。本研究的目的是考察 KD 对大鼠全身葡萄糖耐量和骨骼肌胰岛素反应的影响,并确定在 KD 中加入月荚鱼油以增加 n-3 LCPUFA 的含量是否能改善代谢结果。对雄性 Sprague Dawley 大鼠分别喂食低脂饮食、高脂饮食、KD 或添加了月桂油(KDn-3)的 KD,为期 8 周。各饮食组之间在全身葡萄糖耐量、骨骼肌胰岛素信号传导或骨骼肌胰岛素刺激的葡萄糖摄取方面没有发现明显差异。我们的研究结果表明,在配对喂养条件下,无论是否补充 n-3 LCPUFA,KD 喂养都不会影响全身葡萄糖稳态或骨骼肌胰岛素反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
0.00%
发文量
98
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信