Enhanced thermoelectric performance of Hf-doped ZrNiSn: a first principle study

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Di Cao, Jiannong Cao
{"title":"Enhanced thermoelectric performance of Hf-doped ZrNiSn: a first principle study","authors":"Di Cao,&nbsp;Jiannong Cao","doi":"10.1007/s00894-024-06102-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Context and results</h3><p>In this work, we perform a systematic study on the thermoelectric properties of Zr<sub>1-x</sub>NiSnHf<sub>x</sub> using first-principles calculations combined with Boltzmann transport equations. The power factor of Zr<sub>1-x</sub>NiSnHf<sub>x</sub> increases as the temperature increases from 300 to 1200 K, because the increase in electrical conductivity is greater than the decrease in the Seebeck coefficient. The power factor of Zr<sub>7/8</sub>NiSnHf<sub>1/8</sub> is larger than that of other Zr<sub>1-x</sub>NiSnHf<sub>x</sub> thermoelectric materials, but the thermoelectric figure of merit (ZT) is similar to that of others materials. This is due to the higher electronic thermal conductivity of Zr<sub>7/8</sub>NiSnHf<sub>1/8</sub> compared to other materials. The maximum ZT of p-type (n-type) Zr<sub>1-x</sub>NiSnHf<sub>x</sub> is 0.98 (0.97), 0.9 (0.89), 0.83 (0.80), and 0.72 (0.73) at 300 K, 600 K, 900 K, and 1200 K, respectively, which are greater than those of the pure ZrNiSn. In conclusion, Hf-doped ZrNiSn can enhance the thermoelectric performance and are promising candidates for thermoelectric materials.</p><h3>Computational method</h3><p>This paper uses FP-LAPW implemented in the WIEN2K code. The thermoelectric performance is calculated based on the semi-classical Boltzmann theory implanted using the BoltzTraP code. The electronic thermal conductivity (<i>κ</i><sub>e</sub>) and the carrier concentration (<i>n</i>) have been calculated using the density functional theory.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06102-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context and results

In this work, we perform a systematic study on the thermoelectric properties of Zr1-xNiSnHfx using first-principles calculations combined with Boltzmann transport equations. The power factor of Zr1-xNiSnHfx increases as the temperature increases from 300 to 1200 K, because the increase in electrical conductivity is greater than the decrease in the Seebeck coefficient. The power factor of Zr7/8NiSnHf1/8 is larger than that of other Zr1-xNiSnHfx thermoelectric materials, but the thermoelectric figure of merit (ZT) is similar to that of others materials. This is due to the higher electronic thermal conductivity of Zr7/8NiSnHf1/8 compared to other materials. The maximum ZT of p-type (n-type) Zr1-xNiSnHfx is 0.98 (0.97), 0.9 (0.89), 0.83 (0.80), and 0.72 (0.73) at 300 K, 600 K, 900 K, and 1200 K, respectively, which are greater than those of the pure ZrNiSn. In conclusion, Hf-doped ZrNiSn can enhance the thermoelectric performance and are promising candidates for thermoelectric materials.

Computational method

This paper uses FP-LAPW implemented in the WIEN2K code. The thermoelectric performance is calculated based on the semi-classical Boltzmann theory implanted using the BoltzTraP code. The electronic thermal conductivity (κe) and the carrier concentration (n) have been calculated using the density functional theory.

Abstract Image

Abstract Image

掺杂铪的 ZrNiSn 的增强热电性能:第一原理研究。
背景和结果:在这项工作中,我们利用第一原理计算结合玻尔兹曼输运方程,对 Zr1-xNiSnHfx 的热电性能进行了系统研究。Zr1-xNiSnHfx 的功率因数随着温度从 300 K 上升到 1200 K 而增加,这是因为电导率的增加大于塞贝克系数的降低。Zr7/8NiSnHf1/8 的功率因数大于其他 Zr1-xNiSnHfx 热电材料,但热电功勋值(ZT)与其他材料相似。这是由于 Zr7/8NiSnHf1/8 与其他材料相比具有更高的电子热导率。在 300 K、600 K、900 K 和 1200 K 时,p 型(n 型)Zr1-xNiSnHfx 的最大 ZT 分别为 0.98(0.97)、0.9(0.89)、0.83(0.80)和 0.72(0.73),均大于纯 ZrNiSn。总之,掺杂 Hf 的 ZrNiSn 可以提高热电性能,是一种很有前途的热电材料:本文使用 WIEN2K 代码中的 FP-LAPW 实现。热电性能的计算基于半经典玻尔兹曼理论,并使用 BoltzTraP 代码进行了植入。电子热导率(κe)和载流子浓度(n)采用密度泛函理论进行计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信