Synergistic engineering of heterostructure and oxygen vacancy in cobalt hydroxide/aluminum oxyhydroxide as bifunctional electrocatalysts for urea-assisted hydrogen production.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-01-01 Epub Date: 2024-08-08 DOI:10.1016/j.jcis.2024.07.239
Minglei Yan, Junjie Zhang, Cong Wang, Lang Gao, Wengang Liu, Jiahao Zhang, Chunquan Liu, Zhiwei Lu, Lijun Yang, Chenglu Jiang, Yang Zhao
{"title":"Synergistic engineering of heterostructure and oxygen vacancy in cobalt hydroxide/aluminum oxyhydroxide as bifunctional electrocatalysts for urea-assisted hydrogen production.","authors":"Minglei Yan, Junjie Zhang, Cong Wang, Lang Gao, Wengang Liu, Jiahao Zhang, Chunquan Liu, Zhiwei Lu, Lijun Yang, Chenglu Jiang, Yang Zhao","doi":"10.1016/j.jcis.2024.07.239","DOIUrl":null,"url":null,"abstract":"<p><p>Designing inexpensive, high-efficiency and durable bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is an encouraging tactic to produce hydrogen with reduced energy expenditure. Herein, oxygen vacancy-rich cobalt hydroxide/aluminum oxyhydroxide heterostructure on nickel foam (denoted as Co(OH)<sub>2</sub>/AlOOH/NF-100) has been fabricated using one step hydrothermal process. Theoretical calculation and experimental results indicate the electrons transfer from Co(OH)<sub>2</sub> to highly active AlOOH results in the interfacial charge redistribution and optimization of electronic structure. Abundant oxygen vacancies in the heterostructure could improve the conductivity and simultaneously serve as the active sites for catalytic reaction. Consequently, the optimal Co(OH)<sub>2</sub>/AlOOH/NF-100 demonstrates excellent electrocatalytic performance for HER (62.9 mV@10 mA cm<sup>-2</sup>) and UOR (1.36 V@10 mA cm<sup>-2</sup>) due to the synergy between heterointerface and oxygen vacancies. Additionally, the in situ electrochemical impedance spectrum (EIS) for UOR suggests that the heterostructured catalyst exhibits rapid reaction kinetics, mass transfer and current response. Importantly, the urea-assisted electrolysis composed of the Co(OH)<sub>2</sub>/AlOOH/NF-100 manifests a low cell voltage (1.48 V @ 10 mA cm<sup>-2</sup>) in 1 M KOH containing 0.5 M urea. This work presents a promising avenue to the development of HER/UOR bifunctional electrocatalysts.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.07.239","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Designing inexpensive, high-efficiency and durable bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is an encouraging tactic to produce hydrogen with reduced energy expenditure. Herein, oxygen vacancy-rich cobalt hydroxide/aluminum oxyhydroxide heterostructure on nickel foam (denoted as Co(OH)2/AlOOH/NF-100) has been fabricated using one step hydrothermal process. Theoretical calculation and experimental results indicate the electrons transfer from Co(OH)2 to highly active AlOOH results in the interfacial charge redistribution and optimization of electronic structure. Abundant oxygen vacancies in the heterostructure could improve the conductivity and simultaneously serve as the active sites for catalytic reaction. Consequently, the optimal Co(OH)2/AlOOH/NF-100 demonstrates excellent electrocatalytic performance for HER (62.9 mV@10 mA cm-2) and UOR (1.36 V@10 mA cm-2) due to the synergy between heterointerface and oxygen vacancies. Additionally, the in situ electrochemical impedance spectrum (EIS) for UOR suggests that the heterostructured catalyst exhibits rapid reaction kinetics, mass transfer and current response. Importantly, the urea-assisted electrolysis composed of the Co(OH)2/AlOOH/NF-100 manifests a low cell voltage (1.48 V @ 10 mA cm-2) in 1 M KOH containing 0.5 M urea. This work presents a promising avenue to the development of HER/UOR bifunctional electrocatalysts.

氢氧化钴/氧氢氧化铝中异质结构和氧空位的协同工程,作为尿素辅助制氢的双功能电催化剂。
设计用于尿素氧化反应(UOR)和氢气进化反应(HER)的廉价、高效、耐用的双功能催化剂,是减少能源消耗生产氢气的一个令人鼓舞的策略。在此,我们采用一步水热法在泡沫镍上制备了富氧空位氢氧化钴/氧氢氧化铝异质结构(记为 Co(OH)2/AlOOH/NF-100)。理论计算和实验结果表明,电子从 Co(OH)2 转移到高活性的 AlOOH 会导致界面电荷的重新分配和电子结构的优化。异质结构中丰富的氧空位可以提高导电性,同时成为催化反应的活性位点。因此,由于异质界面和氧空位之间的协同作用,最佳的 Co(OH)2/AlOOH/NF-100 对 HER(62.9 mV@10 mA cm-2)和 UOR(1.36 V@10 mA cm-2)具有优异的电催化性能。此外,UOR 的原位电化学阻抗谱(EIS)表明,异质结构催化剂具有快速的反应动力学、传质和电流响应。重要的是,由 Co(OH)2/AlOOH/NF-100 组成的尿素辅助电解在含有 0.5 M 尿素的 1 M KOH 中表现出较低的电池电压(1.48 V @ 10 mA cm-2)。这项工作为开发 HER/UOR 双功能电催化剂提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信