Santiago Rojas-Rojas, Daniel Martínez, Kei Sawada, Luciano Pereira, Stephen P. Walborn, Esteban S. Gómez, Nadja K. Bernardes, Gustavo Lima
{"title":"Non-Markovianity in High-Dimensional Open Quantum Systems using Next-generation Multicore Optical Fibers","authors":"Santiago Rojas-Rojas, Daniel Martínez, Kei Sawada, Luciano Pereira, Stephen P. Walborn, Esteban S. Gómez, Nadja K. Bernardes, Gustavo Lima","doi":"10.22331/q-2024-08-12-1436","DOIUrl":null,"url":null,"abstract":"With the advent of quantum technology, the interest in communication tasks assisted by quantum systems has increased both in academia and industry. Nonetheless, the transmission of a quantum state in real-world scenarios is bounded by environmental noise, so that the quantum channel is an open quantum system. In this work, we study a high-dimensional open quantum system in a multicore optical fiber by characterizing the environmental interaction as quantum operations corresponding to probabilistic phase-flips. The experimental platform is currently state-of-the-art for quantum information processing with multicore fibers. At a given evolution stage we observe a non-Markovian behaviour of the system, which is demonstrated through a proof-of-principle implementation of the Quantum Vault protocol. A better understanding of phase-noise in multicore fibers will improve several real-world communication protocols, since they are a prime candidate to be adopted in future telecom networks.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"16 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-08-12-1436","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the advent of quantum technology, the interest in communication tasks assisted by quantum systems has increased both in academia and industry. Nonetheless, the transmission of a quantum state in real-world scenarios is bounded by environmental noise, so that the quantum channel is an open quantum system. In this work, we study a high-dimensional open quantum system in a multicore optical fiber by characterizing the environmental interaction as quantum operations corresponding to probabilistic phase-flips. The experimental platform is currently state-of-the-art for quantum information processing with multicore fibers. At a given evolution stage we observe a non-Markovian behaviour of the system, which is demonstrated through a proof-of-principle implementation of the Quantum Vault protocol. A better understanding of phase-noise in multicore fibers will improve several real-world communication protocols, since they are a prime candidate to be adopted in future telecom networks.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.