Excellent thermoelectric performance of Fe2NbAl alloy induced by strong crystal anharmonicity and high band degeneracy

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xianfeng Ye, Jian Yu, Shaoqiu Ke, Dong Liang, Tiantian Chen, Chengshan Liu, Wenjie Xu, Longzhou Li, Wanting Zhu, Xiaolei Nie, Ping Wei, Wenyu Zhao, Qingjie Zhang
{"title":"Excellent thermoelectric performance of Fe2NbAl alloy induced by strong crystal anharmonicity and high band degeneracy","authors":"Xianfeng Ye, Jian Yu, Shaoqiu Ke, Dong Liang, Tiantian Chen, Chengshan Liu, Wenjie Xu, Longzhou Li, Wanting Zhu, Xiaolei Nie, Ping Wei, Wenyu Zhao, Qingjie Zhang","doi":"10.1038/s41535-024-00671-1","DOIUrl":null,"url":null,"abstract":"<p>Full-Heusler alloys with earth-abundant elements exhibit high mechanical strength and favorable electrical transport behavior, but their high intrinsic lattice thermal conductivity limits potential thermoelectric application. Here, the thermoelectric transport properties of Fe-based Full-Heusler Fe<sub>2</sub>MAl (M = V, Nb, Ta) alloys are comprehensively investigated utilizing density functional theory. The results suggest that Fe<sub>2</sub>NbAl exhibits exceptionally low lattice thermal conductivity due to low phonon velocities and weakly bound Nb atoms. In Fe<sub>2</sub>NbAl, the underbonding of the Nb atoms leads large Grüneisen parameters and high anharmonic scattering rates of low-frequency acoustic phonon. Meanwhile, the high band degeneracy and large electrical conductivity lead to a maximum <i>p</i>-type power factor of 255.6 μW·K<sup>−2</sup>·cm<sup>−1</sup> at 900 K. The combination of low lattice thermal conductivity and favorable electrical transport properties leads a maximum <i>p</i>-type dimensionless figure of merit of 1.7. Our work indicates Fe<sub>2</sub>NbAl, as a low-cost, environmentally friendly, is a potential high-performance <i>p</i>-type thermoelectric material.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00671-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Full-Heusler alloys with earth-abundant elements exhibit high mechanical strength and favorable electrical transport behavior, but their high intrinsic lattice thermal conductivity limits potential thermoelectric application. Here, the thermoelectric transport properties of Fe-based Full-Heusler Fe2MAl (M = V, Nb, Ta) alloys are comprehensively investigated utilizing density functional theory. The results suggest that Fe2NbAl exhibits exceptionally low lattice thermal conductivity due to low phonon velocities and weakly bound Nb atoms. In Fe2NbAl, the underbonding of the Nb atoms leads large Grüneisen parameters and high anharmonic scattering rates of low-frequency acoustic phonon. Meanwhile, the high band degeneracy and large electrical conductivity lead to a maximum p-type power factor of 255.6 μW·K−2·cm−1 at 900 K. The combination of low lattice thermal conductivity and favorable electrical transport properties leads a maximum p-type dimensionless figure of merit of 1.7. Our work indicates Fe2NbAl, as a low-cost, environmentally friendly, is a potential high-performance p-type thermoelectric material.

Abstract Image

强晶体非谐波性和高带退变性诱导的 Fe2NbAl 合金的优异热电性能
富含地球元素的全赫斯勒合金具有很高的机械强度和良好的电输运行为,但其固有的高晶格热导率限制了其潜在的热电应用。本文利用密度泛函理论全面研究了铁基全休斯勒 Fe2MAl(M = V、Nb、Ta)合金的热电传输特性。结果表明,由于声子速度低和 Nb 原子结合力弱,Fe2NbAl 的晶格热导率特别低。在 Fe2NbAl 中,铌原子的弱结合导致 Grüneisen 参数较大,低频声子的非谐波散射率较高。同时,高带变性和大电导率导致 900 K 时的最大 p 型功率因数达到 255.6 μW-K-2-cm-1。我们的研究成果表明,Fe2NbAl 是一种低成本、环保型的潜在高性能 p 型热电材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信