{"title":"A Deep-Learning-Enabled Electrocardiogram and Chest X-Ray for Detecting Pulmonary Arterial Hypertension.","authors":"Pang-Yen Liu, Shi-Chue Hsing, Dung-Jang Tsai, Chin Lin, Chin-Sheng Lin, Chih-Hung Wang, Wen-Hui Fang","doi":"10.1007/s10278-024-01225-4","DOIUrl":null,"url":null,"abstract":"<p><p>The diagnosis and treatment of pulmonary hypertension have changed dramatically through the re-defined diagnostic criteria and advanced drug development in the past decade. The application of Artificial Intelligence for the detection of elevated pulmonary arterial pressure (ePAP) was reported recently. Artificial Intelligence (AI) has demonstrated the capability to identify ePAP and its association with hospitalization due to heart failure when analyzing chest X-rays (CXR). An AI model based on electrocardiograms (ECG) has shown promise in not only detecting ePAP but also in predicting future risks related to cardiovascular mortality. We aimed to develop an AI model integrating ECG and CXR to detect ePAP and evaluate their performance. We developed a deep-learning model (DLM) using paired ECG and CXR to detect ePAP (systolic pulmonary artery pressure > 50 mmHg in transthoracic echocardiography). This model was further validated in a community hospital. Additionally, our DLM was evaluated for its ability to predict future occurrences of left ventricular dysfunction (LVD, ejection fraction < 35%) and cardiovascular mortality. The AUCs for detecting ePAP were as follows: 0.8261 with ECG (sensitivity 76.6%, specificity 74.5%), 0.8525 with CXR (sensitivity 82.8%, specificity 72.7%), and 0.8644 with a combination of both (sensitivity 78.6%, specificity 79.2%) in the internal dataset. In the external validation dataset, the AUCs for ePAP detection were 0.8348 with ECG, 0.8605 with CXR, and 0.8734 with the combination. Furthermore, using the combination of ECGs and CXR, the negative predictive value (NPV) was 98% in the internal dataset and 98.1% in the external dataset. Patients with ePAP detected by the DLM using combination had a higher risk of new-onset LVD with a hazard ratio (HR) of 4.51 (95% CI: 3.54-5.76) in the internal dataset and cardiovascular mortality with a HR of 6.08 (95% CI: 4.66-7.95). Similar results were seen in the external validation dataset. The DLM, integrating ECG and CXR, effectively detected ePAP with a strong NPV and forecasted future risks of developing LVD and cardiovascular mortality. This model has the potential to expedite the early identification of pulmonary hypertension in patients, prompting further evaluation through echocardiography and, when necessary, right heart catheterization (RHC), potentially resulting in enhanced cardiovascular outcomes.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":"747-756"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950589/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01225-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The diagnosis and treatment of pulmonary hypertension have changed dramatically through the re-defined diagnostic criteria and advanced drug development in the past decade. The application of Artificial Intelligence for the detection of elevated pulmonary arterial pressure (ePAP) was reported recently. Artificial Intelligence (AI) has demonstrated the capability to identify ePAP and its association with hospitalization due to heart failure when analyzing chest X-rays (CXR). An AI model based on electrocardiograms (ECG) has shown promise in not only detecting ePAP but also in predicting future risks related to cardiovascular mortality. We aimed to develop an AI model integrating ECG and CXR to detect ePAP and evaluate their performance. We developed a deep-learning model (DLM) using paired ECG and CXR to detect ePAP (systolic pulmonary artery pressure > 50 mmHg in transthoracic echocardiography). This model was further validated in a community hospital. Additionally, our DLM was evaluated for its ability to predict future occurrences of left ventricular dysfunction (LVD, ejection fraction < 35%) and cardiovascular mortality. The AUCs for detecting ePAP were as follows: 0.8261 with ECG (sensitivity 76.6%, specificity 74.5%), 0.8525 with CXR (sensitivity 82.8%, specificity 72.7%), and 0.8644 with a combination of both (sensitivity 78.6%, specificity 79.2%) in the internal dataset. In the external validation dataset, the AUCs for ePAP detection were 0.8348 with ECG, 0.8605 with CXR, and 0.8734 with the combination. Furthermore, using the combination of ECGs and CXR, the negative predictive value (NPV) was 98% in the internal dataset and 98.1% in the external dataset. Patients with ePAP detected by the DLM using combination had a higher risk of new-onset LVD with a hazard ratio (HR) of 4.51 (95% CI: 3.54-5.76) in the internal dataset and cardiovascular mortality with a HR of 6.08 (95% CI: 4.66-7.95). Similar results were seen in the external validation dataset. The DLM, integrating ECG and CXR, effectively detected ePAP with a strong NPV and forecasted future risks of developing LVD and cardiovascular mortality. This model has the potential to expedite the early identification of pulmonary hypertension in patients, prompting further evaluation through echocardiography and, when necessary, right heart catheterization (RHC), potentially resulting in enhanced cardiovascular outcomes.