Jing Hou, Yu Nie, Yiqiong Wen, Shu Hua, Yunjiao Hou, Huilin He, Shibo Sun
{"title":"The role and mechanism of AMPK in pulmonary hypertension.","authors":"Jing Hou, Yu Nie, Yiqiong Wen, Shu Hua, Yunjiao Hou, Huilin He, Shibo Sun","doi":"10.1177/17534666241271990","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary hypertension (PH) is a chronic progressive disease with high mortality. There has been more and more research focusing on the role of AMPK in PH. AMPK consists of three subunits-α, β, and γ. The crosstalk among these subunits ultimately leads to a delicate balance to affect PH, which results in conflicting conclusions about the role of AMPK in PH. It is still unclear how these subunits interfere with each other and achieve balance to improve or deteriorate PH. Several signaling pathways are related to AMPK in the treatment of PH, including AMPK/eNOS/NO pathway, Nox4/mTORC2/AMPK pathway, AMPK/BMP/Smad pathway, and SIRT3-AMPK pathway. Among these pathways, the role and mechanism of AMPK/eNOS/NO and Nox4/mTORC2/AMPK pathways are clearer than others, while the SIRT3-AMPK pathway remains still unclear in the treatment of PH. There are drugs targeting AMPK to improve PH, such as metformin (MET), MET combination, and rhodiola extract. In addition, several novel factors target AMPK for improving PH, such as ADAMTS8, TUFM, and Salt-inducible kinases. However, more researches are needed to explore the specific AMPK signaling pathways involved in these novel factors in the future. In conclusion, AMPK plays an important role in PH.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322949/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17534666241271990","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Pulmonary hypertension (PH) is a chronic progressive disease with high mortality. There has been more and more research focusing on the role of AMPK in PH. AMPK consists of three subunits-α, β, and γ. The crosstalk among these subunits ultimately leads to a delicate balance to affect PH, which results in conflicting conclusions about the role of AMPK in PH. It is still unclear how these subunits interfere with each other and achieve balance to improve or deteriorate PH. Several signaling pathways are related to AMPK in the treatment of PH, including AMPK/eNOS/NO pathway, Nox4/mTORC2/AMPK pathway, AMPK/BMP/Smad pathway, and SIRT3-AMPK pathway. Among these pathways, the role and mechanism of AMPK/eNOS/NO and Nox4/mTORC2/AMPK pathways are clearer than others, while the SIRT3-AMPK pathway remains still unclear in the treatment of PH. There are drugs targeting AMPK to improve PH, such as metformin (MET), MET combination, and rhodiola extract. In addition, several novel factors target AMPK for improving PH, such as ADAMTS8, TUFM, and Salt-inducible kinases. However, more researches are needed to explore the specific AMPK signaling pathways involved in these novel factors in the future. In conclusion, AMPK plays an important role in PH.