Todd Sponholtz, Aziza Jamal-Allial, Shiva K Vojjala, Anahit Papazian, Biruk Eshete, Mark Paullin, Seyed Hamidreza Mahmoudpour, Patrice Verpillat, Daniel C Beachler
{"title":"Trends in the Completeness and Validity of Sources of Death Data Against the National Death Index From 2010 to 2018.","authors":"Todd Sponholtz, Aziza Jamal-Allial, Shiva K Vojjala, Anahit Papazian, Biruk Eshete, Mark Paullin, Seyed Hamidreza Mahmoudpour, Patrice Verpillat, Daniel C Beachler","doi":"10.1002/pds.5870","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We investigated time trends in validation performance characteristics for six sources of death data available within the Healthcare Integrated Research Database (HIRD) over 8 years.</p><p><strong>Methods: </strong>We conducted a secondary analysis of a cohort of advanced cancer patients with linked National Death Index (NDI) data identified in the HIRD between 2010 and 2018. We calculated sensitivity, specificity, positive predictive value, and negative predictive value for six sources of death status data and an algorithm combining data from available sources using NDI data as the reference standard. Measures were calculated for each year of the study including all members in the cohort for at least 1 day in that year.</p><p><strong>Results: </strong>We identified 27 396 deaths from any source among 40 692 cohort members. Between 2010 and 2018, the sensitivity of the Death Master File (DMF) decreased from 0.77 (95% CI = 0.76, 0.79) to 0.12 (95% CI = 0.11, 0.14). In contrast, the sensitivity of online obituary data increased from 0.43 (95% CI = 0.41, 0.45) in 2012 to 0.71 (95% CI = 0.68, 0.73) in 2018. The sensitivity of the composite algorithm remained above 0.83 throughout the study period. PPV was observed to be high from 2010 to 2016 and decrease thereafter for all sources. Specificity and NPV remained at high levels throughout the study.</p><p><strong>Conclusions: </strong>We observed that the sensitivity of mortality data sources compared with the NDI could change substantially between 2010 and 2018. Other validation characteristics were less variable. Combining multiple sources of mortality data may be necessary to achieve adequate performance particularly for multiyear studies.</p>","PeriodicalId":19782,"journal":{"name":"Pharmacoepidemiology and Drug Safety","volume":"33 8","pages":"e5870"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacoepidemiology and Drug Safety","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pds.5870","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: We investigated time trends in validation performance characteristics for six sources of death data available within the Healthcare Integrated Research Database (HIRD) over 8 years.
Methods: We conducted a secondary analysis of a cohort of advanced cancer patients with linked National Death Index (NDI) data identified in the HIRD between 2010 and 2018. We calculated sensitivity, specificity, positive predictive value, and negative predictive value for six sources of death status data and an algorithm combining data from available sources using NDI data as the reference standard. Measures were calculated for each year of the study including all members in the cohort for at least 1 day in that year.
Results: We identified 27 396 deaths from any source among 40 692 cohort members. Between 2010 and 2018, the sensitivity of the Death Master File (DMF) decreased from 0.77 (95% CI = 0.76, 0.79) to 0.12 (95% CI = 0.11, 0.14). In contrast, the sensitivity of online obituary data increased from 0.43 (95% CI = 0.41, 0.45) in 2012 to 0.71 (95% CI = 0.68, 0.73) in 2018. The sensitivity of the composite algorithm remained above 0.83 throughout the study period. PPV was observed to be high from 2010 to 2016 and decrease thereafter for all sources. Specificity and NPV remained at high levels throughout the study.
Conclusions: We observed that the sensitivity of mortality data sources compared with the NDI could change substantially between 2010 and 2018. Other validation characteristics were less variable. Combining multiple sources of mortality data may be necessary to achieve adequate performance particularly for multiyear studies.
期刊介绍:
The aim of Pharmacoepidemiology and Drug Safety is to provide an international forum for the communication and evaluation of data, methods and opinion in the discipline of pharmacoepidemiology. The Journal publishes peer-reviewed reports of original research, invited reviews and a variety of guest editorials and commentaries embracing scientific, medical, statistical, legal and economic aspects of pharmacoepidemiology and post-marketing surveillance of drug safety. Appropriate material in these categories may also be considered for publication as a Brief Report.
Particular areas of interest include:
design, analysis, results, and interpretation of studies looking at the benefit or safety of specific pharmaceuticals, biologics, or medical devices, including studies in pharmacovigilance, postmarketing surveillance, pharmacoeconomics, patient safety, molecular pharmacoepidemiology, or any other study within the broad field of pharmacoepidemiology;
comparative effectiveness research relating to pharmaceuticals, biologics, and medical devices. Comparative effectiveness research is the generation and synthesis of evidence that compares the benefits and harms of alternative methods to prevent, diagnose, treat, and monitor a clinical condition, as these methods are truly used in the real world;
methodologic contributions of relevance to pharmacoepidemiology, whether original contributions, reviews of existing methods, or tutorials for how to apply the methods of pharmacoepidemiology;
assessments of harm versus benefit in drug therapy;
patterns of drug utilization;
relationships between pharmacoepidemiology and the formulation and interpretation of regulatory guidelines;
evaluations of risk management plans and programmes relating to pharmaceuticals, biologics and medical devices.