Maxi Schulz, Malte Kramer, Oliver Kuss, Tim Mathes
{"title":"A re-analysis of about 60,000 sparse data meta-analyses suggests that using an adequate method for pooling matters.","authors":"Maxi Schulz, Malte Kramer, Oliver Kuss, Tim Mathes","doi":"10.1002/jrsm.1748","DOIUrl":null,"url":null,"abstract":"<p><p>In sparse data meta-analyses (with few trials or zero events), conventional methods may distort results. Although better-performing one-stage methods have become available in recent years, their implementation remains limited in practice. This study examines the impact of using conventional methods compared to one-stage models by re-analysing meta-analyses from the Cochrane Database of Systematic Reviews in scenarios with zero event trials and few trials. For each scenario, we computed one-stage methods (Generalised linear mixed model [GLMM], Beta-binomial model [BBM], Bayesian binomial-normal hierarchical model using a weakly informative prior [BNHM-WIP]) and compared them with conventional methods (Peto-Odds-ratio [PETO], DerSimonian-Laird method [DL] for zero event trials; DL, Paule-Mandel [PM], Restricted maximum likelihood [REML] method for few trials). While all methods showed similar treatment effect estimates, substantial variability in statistical precision emerged. Conventional methods generally resulted in smaller confidence intervals (CIs) compared to one-stage models in the zero event situation. In the few trials scenario, the CI lengths were widest for the BBM on average and significance often changed compared to the PM and REML, despite the relatively wide CIs of the latter. In agreement with simulations and guidelines for meta-analyses with zero event trials, our results suggest that one-stage models are preferable. The best model can be either selected based on the data situation or, using a method that can be used in various situations. In the few trial situation, using BBM and additionally PM or REML for sensitivity analyses appears reasonable when conservative results are desired. Overall, our results encourage careful method selection.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jrsm.1748","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In sparse data meta-analyses (with few trials or zero events), conventional methods may distort results. Although better-performing one-stage methods have become available in recent years, their implementation remains limited in practice. This study examines the impact of using conventional methods compared to one-stage models by re-analysing meta-analyses from the Cochrane Database of Systematic Reviews in scenarios with zero event trials and few trials. For each scenario, we computed one-stage methods (Generalised linear mixed model [GLMM], Beta-binomial model [BBM], Bayesian binomial-normal hierarchical model using a weakly informative prior [BNHM-WIP]) and compared them with conventional methods (Peto-Odds-ratio [PETO], DerSimonian-Laird method [DL] for zero event trials; DL, Paule-Mandel [PM], Restricted maximum likelihood [REML] method for few trials). While all methods showed similar treatment effect estimates, substantial variability in statistical precision emerged. Conventional methods generally resulted in smaller confidence intervals (CIs) compared to one-stage models in the zero event situation. In the few trials scenario, the CI lengths were widest for the BBM on average and significance often changed compared to the PM and REML, despite the relatively wide CIs of the latter. In agreement with simulations and guidelines for meta-analyses with zero event trials, our results suggest that one-stage models are preferable. The best model can be either selected based on the data situation or, using a method that can be used in various situations. In the few trial situation, using BBM and additionally PM or REML for sensitivity analyses appears reasonable when conservative results are desired. Overall, our results encourage careful method selection.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.