Solutions of the Allen–Cahn equation on closed manifolds in the presence of symmetry

IF 0.7 4区 数学 Q2 MATHEMATICS
Rayssa Caju, Pedro Gaspar
{"title":"Solutions of the Allen–Cahn equation on closed manifolds in the presence of symmetry","authors":"Rayssa Caju, Pedro Gaspar","doi":"10.4310/cag.2023.v31.n8.a2","DOIUrl":null,"url":null,"abstract":"We prove that given a minimal hypersurface $\\Gamma$ in a compact Riemannian manifold without boundary, if all the Jacobi fields of $\\Gamma$ are generated by ambient isometries, then we can find solutions of the Allen–Cahn equation $-\\varepsilon^2 \\Delta u + W^\\prime (u) = 0$ on $M$, for sufficiently small $\\varepsilon \\gt 0$, whose nodal sets converge to $\\Gamma$. This extends the results of Pacard–Ritoré $\\href{https://doi.org/10.4310/jdg/1090426999}{[41]}$ (in the case of closed manifolds and zero mean curvature).","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n8.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that given a minimal hypersurface $\Gamma$ in a compact Riemannian manifold without boundary, if all the Jacobi fields of $\Gamma$ are generated by ambient isometries, then we can find solutions of the Allen–Cahn equation $-\varepsilon^2 \Delta u + W^\prime (u) = 0$ on $M$, for sufficiently small $\varepsilon \gt 0$, whose nodal sets converge to $\Gamma$. This extends the results of Pacard–Ritoré $\href{https://doi.org/10.4310/jdg/1090426999}{[41]}$ (in the case of closed manifolds and zero mean curvature).
存在对称性时封闭流形上艾伦-卡恩方程的解
我们证明,给定无边界紧凑黎曼流形中的最小超曲面$\Gamma$,如果$\Gamma$的所有雅可比场都是由周围等距产生的,那么我们可以在$M$上找到Allen-Cahn方程$-\varepsilon^2 \Delta u + W^\prime (u) = 0$的解,对于足够小的$\varepsilon \gt 0$,其节点集收敛于$\Gamma$。这扩展了 Pacard-Ritoré $\href{https://doi.org/10.4310/jdg/1090426999}{[41]}$ 的结果(在封闭流形和平均曲率为零的情况下)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信