Enhancing Twitter Bot Detection via Multimodal Invariant Representations

Jibing Gong, Jiquan Peng, Jin Qu, ShuYing Du, Kaiyu Wang
{"title":"Enhancing Twitter Bot Detection via Multimodal Invariant Representations","authors":"Jibing Gong, Jiquan Peng, Jin Qu, ShuYing Du, Kaiyu Wang","doi":"arxiv-2408.03096","DOIUrl":null,"url":null,"abstract":"Detecting Twitter Bots is crucial for maintaining the integrity of online\ndiscourse, safeguarding democratic processes, and preventing the spread of\nmalicious propaganda. However, advanced Twitter Bots today often employ\nsophisticated feature manipulation and account farming techniques to blend\nseamlessly with genuine user interactions, posing significant challenges to\nexisting detection models. In response to these challenges, this paper proposes\na novel Twitter Bot Detection framework called BotSAI. This framework enhances\nthe consistency of multimodal user features, accurately characterizing various\nmodalities to distinguish between real users and bots. Specifically, the\narchitecture integrates information from users, textual content, and\nheterogeneous network topologies, leveraging customized encoders to obtain\ncomprehensive user feature representations. The heterogeneous network encoder\nefficiently aggregates information from neighboring nodes through oversampling\ntechniques and local relationship transformers. Subsequently, a multi-channel\nrepresentation mechanism maps user representations into invariant and specific\nsubspaces, enhancing the feature vectors. Finally, a self-attention mechanism\nis introduced to integrate and refine the enhanced user representations,\nenabling efficient information interaction. Extensive experiments demonstrate\nthat BotSAI outperforms existing state-of-the-art methods on two major Twitter\nBot Detection benchmarks, exhibiting superior performance. Additionally,\nsystematic experiments reveal the impact of different social relationships on\ndetection accuracy, providing novel insights for the identification of social\nbots.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting Twitter Bots is crucial for maintaining the integrity of online discourse, safeguarding democratic processes, and preventing the spread of malicious propaganda. However, advanced Twitter Bots today often employ sophisticated feature manipulation and account farming techniques to blend seamlessly with genuine user interactions, posing significant challenges to existing detection models. In response to these challenges, this paper proposes a novel Twitter Bot Detection framework called BotSAI. This framework enhances the consistency of multimodal user features, accurately characterizing various modalities to distinguish between real users and bots. Specifically, the architecture integrates information from users, textual content, and heterogeneous network topologies, leveraging customized encoders to obtain comprehensive user feature representations. The heterogeneous network encoder efficiently aggregates information from neighboring nodes through oversampling techniques and local relationship transformers. Subsequently, a multi-channel representation mechanism maps user representations into invariant and specific subspaces, enhancing the feature vectors. Finally, a self-attention mechanism is introduced to integrate and refine the enhanced user representations, enabling efficient information interaction. Extensive experiments demonstrate that BotSAI outperforms existing state-of-the-art methods on two major Twitter Bot Detection benchmarks, exhibiting superior performance. Additionally, systematic experiments reveal the impact of different social relationships on detection accuracy, providing novel insights for the identification of social bots.
通过多模态不变表征加强 Twitter 机器人检测
检测推特机器人对于维护在线言论的完整性、保障民主进程和防止恶意宣传的传播至关重要。然而,当今先进的 Twitter Bots 通常采用复杂的特征操纵和账户养殖技术,与真正的用户互动完美融合,这给现有的检测模型带来了巨大挑战。为了应对这些挑战,本文提出了一个名为 BotSAI 的新型 Twitter Bot 检测框架。该框架增强了多模态用户特征的一致性,准确描述了各种模态特征,以区分真实用户和机器人。具体来说,该架构整合了来自用户、文本内容和异构网络拓扑的信息,利用定制编码器获得全面的用户特征表征。异构网络编码器通过超采样技术和局部关系转换器有效地聚合了来自相邻节点的信息。随后,多通道表征机制将用户表征映射到不变空间和特定子空间,从而增强特征向量。最后,引入自我关注机制来整合和完善增强的用户表征,从而实现高效的信息交互。广泛的实验证明,BotSAI 在两个主要的 Twitter 机器人检测基准上的表现优于现有的最先进方法,表现出了卓越的性能。此外,系统实验还揭示了不同社交关系对检测准确性的影响,为识别社交机器人提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信