New Modular Equations of Composite Degrees and Partition Identities

IF 1 3区 数学 Q1 MATHEMATICS
Roberta R. Zhou
{"title":"New Modular Equations of Composite Degrees and Partition Identities","authors":"Roberta R. Zhou","doi":"10.1007/s40840-024-01742-z","DOIUrl":null,"url":null,"abstract":"<p>In a recent study, Kim established a general identity which implies a generalization of the modular equations of degrees 3, 5, 11 and 23, and derived some identities for partitions. In this paper we provide proofs for some new modular equations of composite degrees and degree of 7 by methods of elementary algebra and Kim’s generalization of theta-function identities. In addition, we derive many partition identities, which are proved depending upon these modular equations and reciprocation.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"15 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01742-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a recent study, Kim established a general identity which implies a generalization of the modular equations of degrees 3, 5, 11 and 23, and derived some identities for partitions. In this paper we provide proofs for some new modular equations of composite degrees and degree of 7 by methods of elementary algebra and Kim’s generalization of theta-function identities. In addition, we derive many partition identities, which are proved depending upon these modular equations and reciprocation.

复合度数的新模块方程和分部特征
在最近的一项研究中,Kim 建立了一个一般等式,它意味着 3、5、11 和 23 度模态方程的一般化,并导出了一些分部等式。在本文中,我们通过初等代数的方法和 Kim 对 Theta 函数等式的广义化,证明了一些新的复合度和 7 度的模方程。此外,我们还推导了许多分区等式,这些等式的证明依赖于这些模方程和倒数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信