Complexity of 2-Rainbow Total Domination Problem

IF 1 3区 数学 Q1 MATHEMATICS
Tadeja Kraner Šumenjak, Aleksandra Tepeh
{"title":"Complexity of 2-Rainbow Total Domination Problem","authors":"Tadeja Kraner Šumenjak, Aleksandra Tepeh","doi":"10.1007/s40840-024-01747-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we extend the findings of recent studies on <i>k</i>-rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity result holds even when restricted to planar graphs. Along the way tight bounds for the <i>k</i>-rainbow total domination number of rooted product graphs are established. In addition, we obtain the closed formula for the <i>k</i>-rainbow total domination number of the corona product <span>\\(G*H\\)</span>, provided that <i>H</i> has enough vertices.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"33 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01747-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend the findings of recent studies on k-rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity result holds even when restricted to planar graphs. Along the way tight bounds for the k-rainbow total domination number of rooted product graphs are established. In addition, we obtain the closed formula for the k-rainbow total domination number of the corona product \(G*H\), provided that H has enough vertices.

Abstract Image

双彩虹全面统治问题的复杂性
在本文中,我们将重点放在 k-rainbow 总支配的计算复杂性方面,从而扩展了近期关于 k-rainbow 总支配的研究成果。我们证明,判断一个图是否具有给定权重的 2-rainbow 总支配函数的问题是 NP-完全的。即使局限于平面图,这一复杂性结果也是成立的。同时,我们还建立了有根积图的 k-rainbow 总支配数的严格边界。此外,我们还得到了冠积 \(G*H\)的 k-rainbow 总支配数的封闭公式,前提是 H 有足够多的顶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信