Computational modeling of drug response identifies mutant-specific constraints for dosing panRAF and MEK inhibitors in melanoma

Andrew Goetz, Frances Shanahan, Logan Brooks, Eva Lin, Rana Mroue, Darlene Dela Cruz, Thomas Hunsaker, Bartosz Czech, Purushottam Dixit, Udi Segal, Scott Martin, Scott A. Foster, Luca Gerosa
{"title":"Computational modeling of drug response identifies mutant-specific constraints for dosing panRAF and MEK inhibitors in melanoma","authors":"Andrew Goetz, Frances Shanahan, Logan Brooks, Eva Lin, Rana Mroue, Darlene Dela Cruz, Thomas Hunsaker, Bartosz Czech, Purushottam Dixit, Udi Segal, Scott Martin, Scott A. Foster, Luca Gerosa","doi":"10.1101/2024.08.02.606432","DOIUrl":null,"url":null,"abstract":"Purpose: This study explores the potential of preclinical <em>in vitro</em> cell line response data and computational modeling in identifying optimal dosage requirements of pan-RAF (Belvarafenib) and MEK (Cobimetinib) inhibitors in melanoma treatment. Our research is motivated by the critical role of drug combinations in enhancing anti-cancer responses and the need to close the knowledge gap around selecting effective dosing strategies to maximize their potential. Results: In a drug combination screen of 43 melanoma cell lines, we identified unique dosage landscapes of panRAF and MEK inhibitors for NRAS vs BRAF mutant melanomas. Both experienced benefits, but with a notably more synergistic and narrow dosage range for NRAS mutant melanoma. Computational modeling and molecular experiments attributed the difference to a mechanism of adaptive resistance by negative feedback. We validated <em>in vivo</em> translatability of <em>in vitro</em> dose-response maps by accurately predicting tumor growth in xenografts. Then, we analyzed pharmacokinetic and tumor growth data from Phase 1 clinical trials of Belvarafenib with Cobimetinib to show that the synergy requirement imposes stricter precision dose constraints in NRAS mutant melanoma patients. Conclusion: Leveraging pre-clinical data and computational modeling, our approach proposes dosage strategies that can optimize synergy in drug combinations, while also bringing forth the real-world challenges of staying within a precise dose range.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.02.606432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study explores the potential of preclinical in vitro cell line response data and computational modeling in identifying optimal dosage requirements of pan-RAF (Belvarafenib) and MEK (Cobimetinib) inhibitors in melanoma treatment. Our research is motivated by the critical role of drug combinations in enhancing anti-cancer responses and the need to close the knowledge gap around selecting effective dosing strategies to maximize their potential. Results: In a drug combination screen of 43 melanoma cell lines, we identified unique dosage landscapes of panRAF and MEK inhibitors for NRAS vs BRAF mutant melanomas. Both experienced benefits, but with a notably more synergistic and narrow dosage range for NRAS mutant melanoma. Computational modeling and molecular experiments attributed the difference to a mechanism of adaptive resistance by negative feedback. We validated in vivo translatability of in vitro dose-response maps by accurately predicting tumor growth in xenografts. Then, we analyzed pharmacokinetic and tumor growth data from Phase 1 clinical trials of Belvarafenib with Cobimetinib to show that the synergy requirement imposes stricter precision dose constraints in NRAS mutant melanoma patients. Conclusion: Leveraging pre-clinical data and computational modeling, our approach proposes dosage strategies that can optimize synergy in drug combinations, while also bringing forth the real-world challenges of staying within a precise dose range.
药物反应计算模型确定了黑色素瘤泛RAF和MEK抑制剂剂量的突变特异性制约因素
目的:本研究探讨了临床前体外细胞系反应数据和计算建模在确定泛RAF(贝伐非尼)和MEK(Cobimetinib)抑制剂在黑色素瘤治疗中的最佳剂量要求方面的潜力。我们研究的动力来自于药物组合在增强抗癌反应中的关键作用,以及弥合围绕选择有效剂量策略以最大限度发挥其潜力的知识差距的必要性。研究结果在对 43 个黑色素瘤细胞系进行的联合用药筛选中,我们发现了泛RAF 和 MEK 抑制剂对 NRAS 与 BRAF 突变黑色素瘤的独特用药情况。这两种抑制剂都有疗效,但对 NRAS 突变黑色素瘤的协同作用更明显,剂量范围更窄。计算建模和分子实验将这种差异归因于负反馈的适应性抗药性机制。我们通过准确预测异种移植的肿瘤生长,验证了体外剂量反应图的体内可转化性。然后,我们分析了贝伐非尼与科比替尼(Cobimetinib)1 期临床试验的药代动力学和肿瘤生长数据,结果表明协同作用要求对 NRAS 突变黑色素瘤患者施加了更严格的精确剂量限制。结论利用临床前数据和计算模型,我们的方法提出了可以优化药物组合协同作用的剂量策略,同时也提出了在精确剂量范围内的现实挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信