More General Soliton Solution for Vectorial Bose-Einstein Condensate

P. S. Vinayagam
{"title":"More General Soliton Solution for Vectorial Bose-Einstein Condensate","authors":"P. S. Vinayagam","doi":"arxiv-2408.03082","DOIUrl":null,"url":null,"abstract":"WE derive exact and more general solutions of the two coupled\nGross-Pitaevskii equation with suitable parameters by demonstrating two\nanalytical methods. In the first method, equations are analysed and inferred\nsome of their mathematical and physical properties, which are then used to\nderive the exact stationary solutions. In the second method, we demonstrate the\nDarboux transformation method and construct exact and more general soliton\nsolutions for the Gross-Pitaevskii equation (NLS equation with external\npotential term). We have proved that the solutions were more general one by\nshowcasing all kinds of soliton pairs by manoeuvring the parameters suitably.","PeriodicalId":501521,"journal":{"name":"arXiv - PHYS - Quantum Gases","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

WE derive exact and more general solutions of the two coupled Gross-Pitaevskii equation with suitable parameters by demonstrating two analytical methods. In the first method, equations are analysed and inferred some of their mathematical and physical properties, which are then used to derive the exact stationary solutions. In the second method, we demonstrate the Darboux transformation method and construct exact and more general soliton solutions for the Gross-Pitaevskii equation (NLS equation with external potential term). We have proved that the solutions were more general one by showcasing all kinds of soliton pairs by manoeuvring the parameters suitably.
矢量玻色-爱因斯坦凝聚态的更一般孤子解决方案
我们通过展示两种分析方法,推导出具有合适参数的格罗斯-皮塔耶夫斯基两耦合方程的精确和更一般的解。在第一种方法中,我们对方程进行分析,并推断出一些数学和物理特性,然后利用这些特性推导出精确的静态解。在第二种方法中,我们展示了达布变换方法,并为格罗斯-皮塔耶夫斯基方程(带外部势项的 NLS 方程)构建了精确且更一般的求解。我们通过适当调整参数,展示了各种孤子对,从而证明这些解是更一般的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信