E. TholerusUKAEA, L. GarzottiUKAEA, V. ParailUKAEA, Y. BaranovUKAEA, X. BonninITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France, G. CorriganUKAEA, F. ErikssonUKAEA, D. FarinaIstituto per la Scienza e Tecnologia dei Plasmi, CNR, Milan, Italy, L. FiginiIstituto per la Scienza e Tecnologia dei Plasmi, CNR, Milan, Italy, D. M. HartingInstitut für Energie- und Klimaforschung IEK-4, FZJ, TEC, 52425 Jülich, Germany, S. H. KimITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France, F. KoechlITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France, A. LoarteITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France, E. Militello AspUKAEA, H. NordmanAssociation EURATOM-VR, Chalmers University of Technology, Göteborg, Sweden, S. D. PinchesITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France, A. R. PolevoiITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France, P. StrandAssociation EURATOM-VR, Chalmers University of Technology, Göteborg, Sweden
{"title":"Access and sustainment of ELMy H-mode operation for ITER Pre-Fusion Power Operation plasmas using JINTRAC","authors":"E. TholerusUKAEA, L. GarzottiUKAEA, V. ParailUKAEA, Y. BaranovUKAEA, X. BonninITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France, G. CorriganUKAEA, F. ErikssonUKAEA, D. FarinaIstituto per la Scienza e Tecnologia dei Plasmi, CNR, Milan, Italy, L. FiginiIstituto per la Scienza e Tecnologia dei Plasmi, CNR, Milan, Italy, D. M. HartingInstitut für Energie- und Klimaforschung IEK-4, FZJ, TEC, 52425 Jülich, Germany, S. H. KimITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France, F. KoechlITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France, A. LoarteITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France, E. Militello AspUKAEA, H. NordmanAssociation EURATOM-VR, Chalmers University of Technology, Göteborg, Sweden, S. D. PinchesITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France, A. R. PolevoiITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France, P. StrandAssociation EURATOM-VR, Chalmers University of Technology, Göteborg, Sweden","doi":"arxiv-2408.01222","DOIUrl":null,"url":null,"abstract":"In the initial stages of ITER operation, ELM mitigation systems need to be\ncommissioned. This requires controlled flat-top operation in type-I ELMy H-mode\nregimes. Hydrogen or helium plasma discharges are used exclusively in these\nstages to ensure negligible production of neutrons from fusion reactions. With\nthe expected higher L-H power threshold of hydrogen and helium plasmas compared\nto corresponding D and D/T plasmas, it is uncertain whether available auxiliary\npower systems are sufficient to operate in stable type-I ELMy H-mode. This has\nbeen investigated using integrated core and edge/SOL/divertor modelling with\nJINTRAC. Assuming that the L-H power threshold is well captured by the Martin08\nscaling law, the presented simulations have found that 30 MW of ECRH power is\nlikely required for the investigated hydrogen plasma scenarios, rather than the\noriginally planned 20 MW in the 2016 Staged Approach ITER Baseline. However,\npast experiments have shown that a small helium fraction (~10 %) can\nconsiderably reduce the hydrogen plasma L-H power threshold. Assuming that\nthese results extrapolate to ITER operation regimes, the 7.5MA/2.65T hydrogen\nplasma scenario is likely to access stable type-I ELMy H-mode operation also at\n20 MW of ECRH.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the initial stages of ITER operation, ELM mitigation systems need to be
commissioned. This requires controlled flat-top operation in type-I ELMy H-mode
regimes. Hydrogen or helium plasma discharges are used exclusively in these
stages to ensure negligible production of neutrons from fusion reactions. With
the expected higher L-H power threshold of hydrogen and helium plasmas compared
to corresponding D and D/T plasmas, it is uncertain whether available auxiliary
power systems are sufficient to operate in stable type-I ELMy H-mode. This has
been investigated using integrated core and edge/SOL/divertor modelling with
JINTRAC. Assuming that the L-H power threshold is well captured by the Martin08
scaling law, the presented simulations have found that 30 MW of ECRH power is
likely required for the investigated hydrogen plasma scenarios, rather than the
originally planned 20 MW in the 2016 Staged Approach ITER Baseline. However,
past experiments have shown that a small helium fraction (~10 %) can
considerably reduce the hydrogen plasma L-H power threshold. Assuming that
these results extrapolate to ITER operation regimes, the 7.5MA/2.65T hydrogen
plasma scenario is likely to access stable type-I ELMy H-mode operation also at
20 MW of ECRH.
在热核实验堆运行的初始阶段,需要启用 ELM 减缓系统。这需要在 I 型 ELMy H 模式下进行受控平顶运行。氢或氦等离子体放电仅用于这些阶段,以确保聚变反应产生的中子微乎其微。与相应的 D 和 D/T 等离子体相比,氢和氦等离子体的 L-H 功率阈值较高,因此尚不确定现有的辅助功率系统是否足以在稳定的 I 型 ELMy H 模式下运行。我们使用 JINTRAC 的集成核心和边缘/SOL/分流器建模对这一问题进行了研究。假定马丁08缩放定律能够很好地捕捉到L-H功率阈值,所进行的模拟发现,在所研究的氢等离子体方案中,很可能需要30兆瓦的ECRH功率,而不是2016年分阶段方法ITER基线中最初计划的20兆瓦。然而,过去的实验表明,较小的氦组分(约 10%)可以显著降低氢等离子体的长氢功率阈值。假设这些结果可以推广到热核实验堆的运行机制,那么 7.5MA/2.65T 氢等离子体方案很可能在 20 兆瓦 ECRH 的情况下也能实现稳定的 I 型 ELMy H 模式运行。