Temporal Adaptive Learned Surveillance Video Compression

IF 4.8 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yu Zhao;Mao Ye;Luping Ji;Hongwei Guo;Ce Zhu
{"title":"Temporal Adaptive Learned Surveillance Video Compression","authors":"Yu Zhao;Mao Ye;Luping Ji;Hongwei Guo;Ce Zhu","doi":"10.1109/TBC.2024.3434736","DOIUrl":null,"url":null,"abstract":"As the amount of surveillance video data increases at an exponential rate, the need for efficient video compression algorithms becomes increasingly urgent. The inter-frame compression schemes of existing surveillance video compression methods predict the current frame through the previous frame, causing the error to gradually increase because the quality of the reference frame decreases progressively. In this paper, we propose a Temporal Adaptive enhancement method for Learned surveillance video Compression (TALC). The proposed TALC has two modules: Forward Temporal Adaptive (FTA) module and Backward Temporal Adaptive (BTA) module which are put before and after motion and residual bits transmission modules respectively. These two modules have the same network structure which consists of a Temporal Adaptive Selection (TAS) block and a Feature Enhancement (FE) block. TAS block can analyze the extent which errors accumulate in optical flow and residuals, then select the corresponding enhancement sub-block; while FE block consists of several enhancement sub-blocks according to different levels of error accumulation. The proposed TALC has strong versatility and low coupling, which can be applied in almost all learned video compression frameworks as a plugin. Experimental results show that the proposed TALC method can significantly improve the coding performance of learned surveillance video compression networks without changing the original basic structure.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"71 1","pages":"142-153"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10623347/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As the amount of surveillance video data increases at an exponential rate, the need for efficient video compression algorithms becomes increasingly urgent. The inter-frame compression schemes of existing surveillance video compression methods predict the current frame through the previous frame, causing the error to gradually increase because the quality of the reference frame decreases progressively. In this paper, we propose a Temporal Adaptive enhancement method for Learned surveillance video Compression (TALC). The proposed TALC has two modules: Forward Temporal Adaptive (FTA) module and Backward Temporal Adaptive (BTA) module which are put before and after motion and residual bits transmission modules respectively. These two modules have the same network structure which consists of a Temporal Adaptive Selection (TAS) block and a Feature Enhancement (FE) block. TAS block can analyze the extent which errors accumulate in optical flow and residuals, then select the corresponding enhancement sub-block; while FE block consists of several enhancement sub-blocks according to different levels of error accumulation. The proposed TALC has strong versatility and low coupling, which can be applied in almost all learned video compression frameworks as a plugin. Experimental results show that the proposed TALC method can significantly improve the coding performance of learned surveillance video compression networks without changing the original basic structure.
时态自适应学习型监控视频压缩
随着监控视频数据量呈指数级增长,对高效视频压缩算法的需求日益迫切。现有监控视频压缩方法的帧间压缩方案通过前一帧来预测当前帧,由于参考帧的质量逐渐下降,导致误差逐渐增大。本文提出了一种用于学习监控视频压缩(TALC)的时间自适应增强方法。提出的TALC有两个模块:前向时间自适应(FTA)模块和后向时间自适应(BTA)模块,分别放在运动模块和剩余比特传输模块的前后。这两个模块具有相同的网络结构,由时间自适应选择(TAS)块和特征增强(FE)块组成。TAS块可以分析误差在光流和残差中积累的程度,然后选择相应的增强子块;而FE块则根据不同的误差积累程度由多个增强子块组成。所提出的TALC具有较强的通用性和低耦合性,可以作为插件应用于几乎所有学习过的视频压缩框架中。实验结果表明,在不改变原有基本结构的情况下,提出的TALC方法可以显著提高学习后的监控视频压缩网络的编码性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信