{"title":"Intersection of complete cotorsion pairs","authors":"Qikai Wang, Haiyan Zhu","doi":"arxiv-2408.01922","DOIUrl":null,"url":null,"abstract":"Given two (hereditary) complete cotorsion pairs\n$(\\mathcal{X}_1,\\mathcal{Y}_1)$ and $(\\mathcal{X}_2,\\mathcal{Y}_2)$ in an exact\ncategory with $\\mathcal{X}_1\\subseteq \\mathcal{Y}_2$, we prove that $\\left({\\rm\nSmd}\\langle \\mathcal{X}_1,\\mathcal{X}_2 \\rangle,\\mathcal{Y}_1\\cap\n\\mathcal{Y}_2\\right)$ is also a (hereditary) complete cotorsion pair, where\n${\\rm Smd}\\langle \\mathcal{X}_1,\\mathcal{X}_2 \\rangle$ is the class of direct\nsummands of extension of $\\mathcal{X}_1$ and $\\mathcal{X}_2$. As an\napplication, we construct complete cotorsion pairs, such as\n$(^\\perp\\mathcal{GI}^{\\leqslant n},\\mathcal{GI}^{\\leqslant n})$, where\n$\\mathcal{GI}^{\\leqslant n}$ is the class of modules of Gorenstein injective\ndimension at most $n$. And we also characterize the left orthogonal class of\nexact complexes of injective modules and the classes of modules with finite\nGorenstein projective, Gorenstein flat, and PGF dimensions.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given two (hereditary) complete cotorsion pairs
$(\mathcal{X}_1,\mathcal{Y}_1)$ and $(\mathcal{X}_2,\mathcal{Y}_2)$ in an exact
category with $\mathcal{X}_1\subseteq \mathcal{Y}_2$, we prove that $\left({\rm
Smd}\langle \mathcal{X}_1,\mathcal{X}_2 \rangle,\mathcal{Y}_1\cap
\mathcal{Y}_2\right)$ is also a (hereditary) complete cotorsion pair, where
${\rm Smd}\langle \mathcal{X}_1,\mathcal{X}_2 \rangle$ is the class of direct
summands of extension of $\mathcal{X}_1$ and $\mathcal{X}_2$. As an
application, we construct complete cotorsion pairs, such as
$(^\perp\mathcal{GI}^{\leqslant n},\mathcal{GI}^{\leqslant n})$, where
$\mathcal{GI}^{\leqslant n}$ is the class of modules of Gorenstein injective
dimension at most $n$. And we also characterize the left orthogonal class of
exact complexes of injective modules and the classes of modules with finite
Gorenstein projective, Gorenstein flat, and PGF dimensions.