Intersection of complete cotorsion pairs

Qikai Wang, Haiyan Zhu
{"title":"Intersection of complete cotorsion pairs","authors":"Qikai Wang, Haiyan Zhu","doi":"arxiv-2408.01922","DOIUrl":null,"url":null,"abstract":"Given two (hereditary) complete cotorsion pairs\n$(\\mathcal{X}_1,\\mathcal{Y}_1)$ and $(\\mathcal{X}_2,\\mathcal{Y}_2)$ in an exact\ncategory with $\\mathcal{X}_1\\subseteq \\mathcal{Y}_2$, we prove that $\\left({\\rm\nSmd}\\langle \\mathcal{X}_1,\\mathcal{X}_2 \\rangle,\\mathcal{Y}_1\\cap\n\\mathcal{Y}_2\\right)$ is also a (hereditary) complete cotorsion pair, where\n${\\rm Smd}\\langle \\mathcal{X}_1,\\mathcal{X}_2 \\rangle$ is the class of direct\nsummands of extension of $\\mathcal{X}_1$ and $\\mathcal{X}_2$. As an\napplication, we construct complete cotorsion pairs, such as\n$(^\\perp\\mathcal{GI}^{\\leqslant n},\\mathcal{GI}^{\\leqslant n})$, where\n$\\mathcal{GI}^{\\leqslant n}$ is the class of modules of Gorenstein injective\ndimension at most $n$. And we also characterize the left orthogonal class of\nexact complexes of injective modules and the classes of modules with finite\nGorenstein projective, Gorenstein flat, and PGF dimensions.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given two (hereditary) complete cotorsion pairs $(\mathcal{X}_1,\mathcal{Y}_1)$ and $(\mathcal{X}_2,\mathcal{Y}_2)$ in an exact category with $\mathcal{X}_1\subseteq \mathcal{Y}_2$, we prove that $\left({\rm Smd}\langle \mathcal{X}_1,\mathcal{X}_2 \rangle,\mathcal{Y}_1\cap \mathcal{Y}_2\right)$ is also a (hereditary) complete cotorsion pair, where ${\rm Smd}\langle \mathcal{X}_1,\mathcal{X}_2 \rangle$ is the class of direct summands of extension of $\mathcal{X}_1$ and $\mathcal{X}_2$. As an application, we construct complete cotorsion pairs, such as $(^\perp\mathcal{GI}^{\leqslant n},\mathcal{GI}^{\leqslant n})$, where $\mathcal{GI}^{\leqslant n}$ is the class of modules of Gorenstein injective dimension at most $n$. And we also characterize the left orthogonal class of exact complexes of injective modules and the classes of modules with finite Gorenstein projective, Gorenstein flat, and PGF dimensions.
完全对偶的交集
给定两个(遗传的)完全扭转对$(\mathcal{X}_1,\mathcal{Y}_1)$ 和$(\mathcal{X}_2,\mathcal{Y}_2)$ 在一个精确类别中,有$\mathcal{X}_1(子集) \mathcal{Y}_2$,我们证明$left({rmSmd}\langle \mathcal{X}_1、\其中${rm Smd}\langle \mathcal{X}_1,\mathcal{X}_2 \rangle$是$\mathcal{X}_1$和$\mathcal{X}_2$的外延的直接和的类。作为应用,我们构造了完整的反转对,例如$(^\perp\mathcal{GI}^{leqslant n},\mathcal{GI}^{leqslant n})$,其中$\mathcal{GI}^{leqslant n}$是哥伦布注维度最多为$n$的模块类。我们还描述了注入模块的精确复数的左正交类,以及具有有限戈伦斯坦投影维度、戈伦斯坦平面维度和 PGF 维度的模块类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信