Relative Calabi-Yau structure on microlocalization

Christopher Kuo, Wenyuan Li
{"title":"Relative Calabi-Yau structure on microlocalization","authors":"Christopher Kuo, Wenyuan Li","doi":"arxiv-2408.04085","DOIUrl":null,"url":null,"abstract":"For an oriented manifold $M$ and a compact subanalytic Legendrian $\\Lambda\n\\subseteq S^*M$, we construct a canonical strong smooth relative Calabi--Yau\nstructure on the microlocalization at infinity and its left adjoint\n$m_\\Lambda^l: \\operatorname{\\mu sh}_\\Lambda(\\Lambda) \\rightleftharpoons\n\\operatorname{Sh}_\\Lambda(M)_0 : m_\\Lambda$ between compactly supported sheaves\non $M$ with singular support on $\\Lambda$ and microsheaves on $\\Lambda$. We\nalso construct a canonical strong Calabi-Yau structure on microsheaves\n$\\operatorname{\\mu sh}_\\Lambda(\\Lambda)$. Our approach does not require local\nproperness and hence does not depend on arborealization. We thus obtain a\ncanonical smooth relative Calabi-Yau structure on the Orlov functor for wrapped\nFukaya categories of cotangent bundles with Weinstein stops, such that the\nwrap-once functor is the inverse dualizing bimodule.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For an oriented manifold $M$ and a compact subanalytic Legendrian $\Lambda \subseteq S^*M$, we construct a canonical strong smooth relative Calabi--Yau structure on the microlocalization at infinity and its left adjoint $m_\Lambda^l: \operatorname{\mu sh}_\Lambda(\Lambda) \rightleftharpoons \operatorname{Sh}_\Lambda(M)_0 : m_\Lambda$ between compactly supported sheaves on $M$ with singular support on $\Lambda$ and microsheaves on $\Lambda$. We also construct a canonical strong Calabi-Yau structure on microsheaves $\operatorname{\mu sh}_\Lambda(\Lambda)$. Our approach does not require local properness and hence does not depend on arborealization. We thus obtain a canonical smooth relative Calabi-Yau structure on the Orlov functor for wrapped Fukaya categories of cotangent bundles with Weinstein stops, such that the wrap-once functor is the inverse dualizing bimodule.
微定位的相对 Calabi-Yau 结构
对于一个定向流形 $M$ 和一个紧凑的亚解析 Legendrian $\Lambda\subseteq S^*M$,我们在无穷远处的微定位及其左邻接$m_\Lambda^l上构造了一个典型的强光滑相对 Calabi--Yaustructure :\operatorname\{mu sh}_\Lambda(\Lambda) \rightleftharpoons\operatorname{Sh}_\Lambda(M)_0 : m_\Lambda$ 在$M$上具有奇异支持的紧凑支持的剪切与$Lambda$上的微剪切之间。我们还在微波$operatorname/{mu sh}_\Lambda(\Lambda)$上构造了一个典型的强卡拉比-尤结构。我们的方法不要求局部正确性,因此也不依赖于arborealization。因此,我们在具有韦恩斯坦止境的共切束的包裹富卡雅范畴的奥洛夫函子上得到了一个非对立的光滑相对卡拉比-尤结构,从而使包裹-一次函子成为逆对偶双模子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信